题目大意:给你$m,a,c,X_0,n,g$,求$X_{n+1}=(a\cdot X_n+c) \bmod{m}$,最后输出对$g$取模
题解:矩阵快速幂+龟速乘,这里用了$long\;double$强转
卡点:无
C++ Code:
#include <cstdio>
#include <cmath>
using namespace std;
long long m, a, c, x0, n, g;
long long mul(long long a, long long b) {
long long d = (long long) floor(a * (long double) b / m + 0.5);
long long res = a * b - d * m;
if (res < 0) res += m;
return res;
}
//long long mul(long long a, long long b) {
// long long res = 0;
// while (b) {
// if (b & 1) res = (res + a) % m;
// b >>= 1;
// a = (a + a) % m;
// }
// return res;
//}
struct matrix {
long long s[4];
matrix (long long a, long long b, long long c, long long d) {
s[0] = a; s[1] = b; s[2] = c; s[3] = d;
}
matrix operator * (matrix rhs) {
matrix res(0, 0, 0, 0);
res.s[0] = (mul(s[0], rhs.s[0]) + mul(s[1], rhs.s[2])) % m;
res.s[1] = (mul(s[0], rhs.s[1]) + mul(s[1], rhs.s[3])) % m;
res.s[2] = (mul(s[2], rhs.s[0]) + mul(s[3], rhs.s[2])) % m;
res.s[3] = (mul(s[2], rhs.s[1]) + mul(s[3], rhs.s[3])) % m;
return res;
}
};
int main() {
scanf("%lld%lld%lld%lld%lld%lld", &m, &a, &c, &x0, &n, &g);
matrix base(a, 0, 1, 1), ans(x0, c, 0, 0);
while (n) {
if (n & 1) ans = ans * base;
base = base * base;
n >>= 1;
}
printf("%lld\n", ans.s[0] % g);
return 0;
}