CF959E Mahmoud and Ehab and the xor-MST 思维

本文探讨了一个结合位运算与特殊图论的问题,即在由n个顶点构成的完全图中,每条边的权重为连接两点的编号进行异或操作的结果,求该图的最小生成树总权重。通过对前几项的手动计算,发现每位上的贡献等于当前n的一半,从而得出解决此问题的有效算法。

Ehab is interested in the bitwise-xor operation and the special graphs. Mahmoud gave him a problem that combines both. He has a complete graph consisting of n vertices numbered from 0 to n - 1. For all 0 ≤ u < v < n, vertex u and vertex v are connected with an undirected edge that has weight (where is the bitwise-xor operation). Can you find the weight of the minimum spanning tree of that graph?

You can read about complete graphs in https://en.wikipedia.org/wiki/Complete_graph

You can read about the minimum spanning tree in https://en.wikipedia.org/wiki/Minimum_spanning_tree

The weight of the minimum spanning tree is the sum of the weights on the edges included in it.

Input

The only line contains an integer n (2 ≤ n ≤ 1012), the number of vertices in the graph.

Output

The only line contains an integer x, the weight of the graph's minimum spanning tree.

Example
Input
Copy
4
Output
Copy
4
Note

In the first sample: The weight of the minimum spanning tree is 1+2+1=4.

 

题意翻译

n个点的完全图标号(0-n-1),i和j连边权值为i^j,求MST的值

 

不妨先手算几项,可以发现每一位上的贡献为当前n 的一半;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 300005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)

inline ll rd() {
	ll x = 0;
	char c = getchar();
	bool f = false;
	while (!isdigit(c)) {
		if (c == '-') f = true;
		c = getchar();
	}
	while (isdigit(c)) {
		x = (x << 1) + (x << 3) + (c ^ 48);
		c = getchar();
	}
	return f ? -x : x;
}

ll gcd(ll a, ll b) {
	return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; }

/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
	if (!b) {
		x = 1; y = 0; return a;
	}
	ans = exgcd(b, a%b, x, y);
	ll t = x; x = y; y = t - a / b * y;
	return ans;
}
*/



ll qpow(ll a, ll b, ll c) {
	ll ans = 1;
	a = a % c;
	while (b) {
		if (b % 2)ans = ans * a%c;
		b /= 2; a = a * a%c;
	}
	return ans;
}



int main()
{
	//ios::sync_with_stdio(0);
	ll n; rdllt(n);
	ll ans = 0;
	ll tmp = 1;
	while (n>1) {
		ans += tmp * (n >> 1); tmp <<= 1; n -= (n >> 1);
	//	cout << n<<' '<<ans << endl;
	}
	cout << ans << endl;
    return 0;
}

 

转载于:https://www.cnblogs.com/zxyqzy/p/10017081.html

代码转载自:https://pan.quark.cn/s/9cde95ebe57a 横道图,亦称为甘特图,是一种可视化的项目管理手段,用于呈现项目的进度安排和时间框架。 在信息技术领域,特别是在项目执行与软件开发范畴内,横道图被普遍采用来监控作业、配置资源以及保障项目能按时交付。 此类图表借助水平条带图示来标示各个任务的起止时间点,使项目成员与管理者可以明确掌握项目的整体发展状况。 周期表或可指代计算机科学中的“作业调度周期表”或“资源配置周期表”。 在计算机系统中,作业调度是一项核心功能,它规定了哪个进程或线程能够在中央处理器上执行以及执行的具体时长。 周期表有助于系统管理者洞察作业的执行频率和资源使用状况,进而提升系统的运作效能和响应能力。 不仅如此,周期表也可能意指数据处理或研究中的周期性文档,如在金融分析中按期更新的市场信息文档。 在压缩文件“横道图,周期表.zip”内含的“横道图,周期表.doc”文件,很可能是对某个项目或任务管理的详尽阐述,涵盖利用横道图来制定和展示项目的时间进程,以及可能牵涉的周期性作业调度或资源配置情形。 文件或许包含以下部分:1. **项目简介**:阐述项目的目标、范畴、预期成效及参与项目的团队成员。 2. **横道图详述**:具体列出了项目中的各项任务,每个任务的启动与终止时间,以及它们之间的关联性。 横道图通常涵盖关键节点,这些节点是项目中的重要事件,象征重要阶段的实现。 3. **任务配置**:明确了每个任务的责任归属,使项目成员明晰自己的职责和截止日期。 4. **进展更新**:若文件是动态维护的,可能会记录项目的实际进展与计划进展的对比,有助于识别延误并调整计划。 5. **周期表探讨**:深入说明了周期性作业的调度,如定期的会议、报告递交、...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值