HDU 2830 Matrix Swapping II (预处理的线性dp)

本文介绍了一道算法题,给定一个0/1矩阵,可通过任意交换两列来最大化由1组成的最大子矩形面积。文章提供了详细的解题思路与代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Matrix Swapping II

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1430    Accepted Submission(s): 950

Problem Description
Given an N * M matrix with each entry equal to 0 or 1. We can find some rectangles in the matrix whose entries are all 1, and we define the maximum area of such rectangle as this matrix’s goodness.

We can swap any two columns any times, and we are to make the goodness of the matrix as large as possible.
 

Input
There are several test cases in the input. The first line of each test case contains two integers N and M (1 ≤ N,M ≤ 1000). Then N lines follow, each contains M numbers (0 or 1), indicating the N * M matrix
 

Output
Output one line for each test case, indicating the maximum possible goodness.
 

Sample Input

   
3 4 1011 1001 0001 3 4 1010 1001 0001
 

Sample Output

   
4 2 Note: Huge Input, scanf() is recommended.
 

Source
2009 Multi-University Training Contest 2 - Host by TJU

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2830

题目大意:给一个0/1矩阵,能够随意交换当中的两列,求由1组成的最大子矩形的面积

题目分析:预处理出每一个点下方有多个连续的1即cnt[i][j]。对每行的cnt值从大到小排序。枚举列dp就可以,dp[i]表示以第i行为上边的矩形的面积最大值。转移方程:dp[i] = max(dp[i], j * cnt[i][j])


#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int const MAX = 1e3 + 5;
int const INF = 0x3fffffff;
char s[MAX][MAX];
int cnt[MAX][MAX];
int dp[MAX];
int n, m;

bool cmp(int a, int b)
{
    return a > b;
}

int main()
{
    while(scanf("%d %d", &n ,&m) != EOF)
    {
        memset(cnt, 0, sizeof(cnt));
        memset(dp, 0, sizeof(dp));
        for(int i = 1; i <= n; i++)
            scanf("%s", s[i] + 1);
        for(int i = n; i >= 1; i--)
            for(int j = 1; j <= m; j++)
                if(s[i][j] - '0')
                    cnt[i][j] = cnt[i + 1][j] + 1;
        for(int i = 1; i <= n; i++)
        {
            sort(cnt[i] + 1, cnt[i] + 1 + m, cmp);
            for(int j = 1; j <= m; j++)
                if(cnt[i][j])
                    dp[i] = max(dp[i], j * cnt[i][j]);
        }
        int ans = 0;
        for(int i = 1; i <= n; i++)
            ans = max(ans, dp[i]);
        printf("%d\n", ans);
    }
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值