背景
Web Scraping
在大数据时代,一切都要用数据来说话,大数据处理的过程一般需要经过以下的几个步骤
数据的采集和获取
数据的清洗,抽取,变形和装载
数据的分析,探索和预测
数据的展现
其中首先要做的就是获取数据,并提炼出有效地数据,为下一步的分析做好准备。
数据的来源多种多样,以为我本身是足球爱好者,而世界杯就要来了,所以我就想提取欧洲联赛的数据来做一个分析。许多的网站都提供了详细的足球数据,例如:
这些网站都提供了详细的足球数据,然而为了进一步的分析,我们希望数据以格式化的形式存储,那么如何把这些网站提供的网页数据转换成格式化的数据呢?这就要用到Web scraping的技术了。简单地说,Web Scraping就是从网站抽取信息, 通常利用程序来模拟人浏览网页的过程,发送http请求,从http响应中获得结果。
Web Scraping 注意事项
在抓取数据之前,要注意以下几点:
阅读网站有关数据的条款和约束条件,搞清楚数据的拥有权和使用限制
友好而礼貌,使用计算机发送请求的速度飞人类阅读可比,不要发送非常密集的大量请求以免造成服务器压力过大
因为网站经常会调整网页的结构,所以你之前写的Scraping代码,并不总是能够工作,可能需要经常调整
因为从网站抓取的数据可能存在不一致的情况,所以很有可能需要手工调整
Python Web Scraping 相关的库
Python提供了很便利的Web Scraping基础,有很多支持的库。这里列出一小部分
当然也不一定要用Python或者不一定要自己写代码,推荐关注import.io
Web Scraping 代码
下面,我们就一步步地用Python,从腾讯体育来抓取欧洲联赛13/14赛季的数据。
首先要安装Beautifulsoup
pip install beautifulsoup4
我们先从球员的数据开始抓取。
该web服务有两个参数,lega表示是哪一个联赛,pn表示的是分页的页数。
首先我们先做一些初始化的准备工作
from urllib2 import urlopen
import urlparse
import bs4
BASE_URL = "http://soccerdata.sports.qq.com"
PLAYER_LIST_QUERY = "/playerSearch.aspx?lega=%s&pn=%d"
league = ['epl','seri','bund','liga','fran','scot','holl','belg']
page_number_limit = 100
player_fields =