题目链接
https://lydsy.com/JudgeOnline/problem.php?id=2005
题解
容易发现,植物(x,y)(x,y)(x,y)和机器之间的连线上植物的数量就是gcd(x,y)\gcd(x,y)gcd(x,y)。
因此答案就是
∑i=1n∑j=1m(2gcd(i,j)−1)=2∑i=1n∑j=1mgcd(i,j)−nm \begin{aligned} & \sum_{i=1}^n \sum_{j=1}^m (2\gcd(i,j)-1)\\ = & 2\sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)-nm \end{aligned} =i=1∑nj=1∑m(2gcd(i,j)−1)2i=1∑nj=1∑mgcd(i,j)−nm
设
g=∑i=1n∑j=1mgcd(i,j)=∑T=1min(n,m)⌊nT⌋⌊mT⌋∑d∣Tdμ(dT)=∑T=1min(n,m)⌊nT⌋⌊mT⌋φ(T) \begin{aligned} g = & \sum_{i=1}^n\sum_{j=1}^m \gcd(i,j)\\ = & \sum_{T=1}^{\min(n,m)}\lfloor \frac{n}{T} \rfloor \lfloor\frac{m}{T}\rfloor \sum_{d|T}d\mu(\frac{d}{T})\\ = & \sum_{T=1}^{\min(n,m)}\lfloor\frac{n}{T}\rfloor \lfloor\frac{m}{T}\rfloor\varphi(T) \end{aligned} g===i=1∑nj=1∑mgcd(i,j)T=1∑min(n,m)⌊Tn⌋⌊Tm⌋d∣T∑dμ(Td)T=1∑min(n,m)⌊Tn⌋⌊Tm⌋φ(T)
这个显然可以整除分块求,当然也可以直接枚举。
则答案就是
2g+nm=2∑T=1min(n,m)⌊nT⌋⌊mT⌋φ(T)+nm \begin{aligned} & 2g+nm\\ = & 2\sum_{T=1}^{\min(n,m)}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\varphi(T)+nm \end{aligned} =2g+nm2T=1∑min(n,m)⌊Tn⌋⌊Tm⌋φ(T)+nm
代码
#include <cstdio>
#include <algorithm>
int read()
{
int x=0,f=1;
char ch=getchar();
while((ch<'0')||(ch>'9'))
{
if(ch=='-')
{
f=-f;
}
ch=getchar();
}
while((ch>='0')&&(ch<='9'))
{
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
const int maxn=100000;
int p[maxn+10],prime[maxn+10],cnt,phi[maxn+10];
int getprime()
{
p[1]=1;
phi[1]=1;
for(int i=2; i<=maxn; ++i)
{
if(!p[i])
{
prime[++cnt]=i;
phi[i]=i-1;
}
for(int j=1; (j<=cnt)&&(i*prime[j]<=maxn); ++j)
{
p[i*prime[j]]=1;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
return 0;
}
int n,m;
long long ans;
int main()
{
getprime();
n=read();
m=read();
for(int i=1; i<=std::min(n,m); ++i)
{
ans+=1ll*(n/i)*(m/i)*phi[i];
}
printf("%lld\n",2*ans-1ll*n*m);
return 0;
}