ICP算法简介
根据点云数据所包含的空间信息,可以直接利用点云数据进行配准。主流算法为最近迭代算法(ICP,Iterative Closest Point),该算法是根据点云数据首先构造局部几何特征,然后再根据局部几何特征进行点云数据重定位。
一、 ICP原理
假设两个点云数据集合P和G,要通过P转换到G(假设两组点云存在局部几何特征相似的部分),可以通过P叉乘四元矩阵进行旋转平移变换到G,或者SVD法将P转换到G位置,总体思想都是需要一个4x4的旋转平移矩阵。对于每次旋转平移变换后计算P的所有(采样)点到G对应(最近)点的距离,用最小二乘法(求方差)求出最小二乘误差,看是否在要求的范围内,如果最小二乘误差小于设定的值,(或迭代次数达到上限,或每次重新迭代后最小二乘误差总在一个很小的范围内不再发生变化),则计算结束,否则继续进行迭代。
粗配准优化方法:主成分分析法
精配准优化方法:基于正交投影的ICp算法改进
二、粗配准优化
PCA是一种有效的检测数据集简化分析方法,用于减少数据集的维数,同时保持数据集对方差贡献最大特征,对于点集P(x1,x2,…,xn),其中,xi是n维数据,均值和协方差矩阵分别为:
$\bar x = \frac{ {\mathop \sum \nolimits_{i = 1}^