机器人学 —— 轨迹规划(Artificial Potential)

本文总结了一门关于机器人轨迹规划课程的最后一课,介绍了利用势场进行轨迹规划的方法。该方法通过DT变换生成罚函数图避免障碍物,并结合终点势场形成人工势场,通过梯度下降算法获得机器人运动轨迹。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  今天终于完成了机器人轨迹规划的最后一次课了,拜拜自带B - BOX 的 Prof. TJ Taylor.

  最后一节课的内容是利用势场来进行轨迹规划。此方法的思路非常清晰,针对Configration Space 里面的障碍物进行 DT变换,用DT变换值作为罚函数的输入,让机器人尽可能的远离障碍物,同时再终点设计抛物面函数,让机器人有向终点靠近的趋势。最后所获得的就是机器人的一种可行运动轨迹。由于此轨迹是梯度下降的,并且罚函数是连续的,所以如果机器人不陷入局部最优,那么就可以获得全局最优路径(我本人不持这样的观点,二阶Hessian矩阵大写的不服,凭什么贪婪算法是最短路径?)

1、基于DT变换生成罚函数图

  DT变换是2D2值图像中的一种算法,其作用是找到某像素到最近非0像素的距离。换言之,就是机器人到最近障碍物的距离。这种距离再机器人学运动中非常容易获得,只要有实时的距离传感器,就能够找到机器人再不同位置下,到最近障碍物的距离。从而生成 f - map (罚函数图)

  

  机器人的Configuration Space 与 f - map 如上图所示。

2、拉向终点的势

  除了罚函数以外,机器人还需要一个拉向终点的势 —— Configuration Space 上一个以终点为中心的抛物面。将其与f - map 相加后,即可得到最终的Artificial Potential.

  

3、梯度下降

  在Artificial Potential 上执行梯度下降算法,获得机器人运动轨迹。

 

4、总结

  机器人轨迹规划是很有前景的学科,以后有前途的方向包括以下:

  非同性机器人:无人汽车不能随时倒车

  动力学约束下的规划:考虑机器人的加速减速

  多机器人轨迹规划

  针对移动障碍轨迹规划

  针对不确定环境轨迹规划

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值