HDU 4549 M斐波那契数列(矩阵幂)

本文解析了HDU 4549题目的解题思路,通过矩阵快速幂求解斐波那契数列相关问题,特别关注于如何在大数运算中高效计算特定形式的指数表达式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4549

题意:F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]。

思路:手算一下可以发现,最后F[n]=a^x*b^y,其中x和y是连续的两项Fib。因此只要求出这两个系数x和y即可。注意这里A^x=A^(x%Phi(C)+Phi(C)) (mod C)。因此在求矩阵快速幂时模的数不是mod=1000000007,而是mod-1。

 

struct matrix
{
    i64 a[2][2];

    void init(int x)
    {
        clr(a,0);
        if(x) a[0][0]=a[1][1]=1;
    }

    matrix operator*(matrix p)
    {
        matrix ans;
        ans.init(0);
        int i,j,k;
        FOR0(k,2) FOR0(i,2) FOR0(j,2)
        {
            ans.a[i][j]+=a[i][k]*p.a[k][j]%(mod-1);
            ans.a[i][j]%=(mod-1);
        }
        return ans;
    }

    matrix pow(int n)
    {
        matrix ans,p=*this;
        ans.init(1);
        while(n)
        {
            if(n&1) ans=ans*p;
            p=p*p;
            n>>=1;
        }
        return ans;
    }
};

matrix p;
int a,b,n;


i64 Pow(i64 a,i64 b)
{
    i64 ans=1;
    while(b)
    {
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}

int main()
{
    p.a[0][0]=p.a[1][0]=p.a[0][1]=1;
    p.a[1][1]=0;
    Rush(a)
    {
        RD(b,n);
        if(n==0) PR(a);
        else if(n==1) PR(b);
        else
        {
            matrix temp=p.pow(n-2);
            int x=(temp.a[0][1]+temp.a[1][1])%(mod-1);
            int y=(temp.a[0][0]+temp.a[1][0])%(mod-1);
            PR(Pow(a,x)*Pow(b,y)%mod);
        }
    }
}

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值