51nod 1281山峰和旗子

题目来源:  Codility
基准时间限制:1 秒 空间限制:131072 KB 分值: 40  难度:4级算法题
用一个长度为N的整数数组A,描述山峰和山谷的高度。山峰需要满足如下条件, 0 < P < N - 1 且 A[P - 1] < A[P] > A[P + 1]。
 
 
现在要在山峰上插上K个旗子,并且每个旗子之间的距离 >= K,问最多能插上多少个旗子(即求K的最大值)。两个山峰之间的距离为|P - Q|。
以上图为例,高度为:1 5 3 4 3 4 1 2 3 4 6 2。其中可以作为山峰的点为:1 3 5 10。
 
放2面旗子, 可以放在1 和 5。
放3面旗子, 可以放在1 5 和 10。
放4面旗子, 可以放在1 5 和 10,之后就放不下了。
所以最多可以放3面旗子。
Input
第1行:一个数N,表示数组的长度(1 <= N <= 50000)。
第2 - N + 1行:每行1个数Ai(1 <= Ai <= 10^9)。
Output
输出最多能插上多少面旗子(即求K的最大值)。
Input示例
12
1 
5 
3 
4 
3 
4 
1 
2 
3 
4 
6 
2
Output示例
3

思路:二分+dp-------用一个f[]数组保存山峰的位置,首先如果没有山峰则直接输出0,其次距离越大代表我们要插的旗子数就越大,我们枚举旗子的个数k 找到最大的可行方案;当然直接枚举会超时,所以这里需要用二分来枚举;
   对于每一个k我们需要用一次dp数组来遍历一次,dp[i]代表前i个位置能插入距离为k的旗子的个数;我们可以得到递推公式 若当前位置不可以插旗子dp[i] = dp[i-1];否则dp[i] = max(dp[i-k]+1,dp[i]);
   其中i-k>0;遍历完之后若dp[n-1]>=k说明我们的k还可以继续增大,直到dp[n-1]恰好等于k的时候就停止二分,此时的k即为最大值
 
 1 #include<iostream>
 2 #include<algorithm>
 3 #include<cstring>
 4 #include<cstdio>
 5 using namespace std;
 6 typedef long long LL;
 7 const int maxn = 50005;
 8 LL n,a[maxn],f[maxn],d[maxn];;
 9 int main()
10 {
11     ios::sync_with_stdio(false);
12 //    freopen("in.txt","r",stdin);
13     while(cin>>n){
14         int flag = 0;
15         for(int i=0;i<n;i++)cin>>a[i];
16         for(int i=1;i<n-1;i++)
17             if(a[i]>a[i-1]&&a[i]>a[i+1]){
18                 f[i] = 1;flag++;
19             }
20         if(!flag){
21             cout<<"0"<<endl;
22             continue;
23         }
24         int l=0,r=n,ans=0;
25         while(l<r){
26             int k = (l+r)>>1;
27             for(int i=0;i<n;i++)
28                 d[i] = f[i];
29             for(int i=0;i<n;i++){
30                 if(!f[i])d[i]=d[i-1];
31                 else if(i-k>0) d[i] = max(d[i-k]+1,d[i]);
32             }
33             if(d[n-1]>=k){
34                 ans = k;
35                 l = k+1;
36             }else r = k;
37         }
38         cout<<ans<<endl;
39     }
40     return 0;
41 }

 

 

转载于:https://www.cnblogs.com/wangrunhu/p/9432927.html

题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行列组合**: - 由于 `N` `M` 的最大值为 8,因此可以枚举所有可能的行组合列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行列需要修改,并且注意行列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行列的枚举组合以减少计算时间? 2. 在计算行列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值