hdu 5534 Partial Tree 背包DP

本文探讨了一种数学与图论结合的树形结构问题,即在给定n个节点的情况下,如何通过合理的度数分配来最大化完成树后的总“酷”值。通过提供输入数据和输出期望结果,阐述了解决该问题的动态规划方法,并详细解释了背包动态规划的实现过程。

Partial Tree

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=5534

Description

In mathematics, and more specifically in graph theory, a tree is an undirected graph in which any two nodes are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.

You find a partial tree on the way home. This tree has n nodes but lacks of n1 edges. You want to complete this tree by adding n1 edges. There must be exactly one path between any two nodes after adding. As you know, there are nn2 ways to complete this tree, and you want to make the completed tree as cool as possible. The coolness of a tree is the sum of coolness of its nodes. The coolness of a node is f(d), where f is a predefined function and d is the degree of this node. What's the maximum coolness of the completed tree?

Input

The first line contains an integer T indicating the total number of test cases.
Each test case starts with an integer n in one line,
then one line with n−1 integers f(1),f(2),…,f(n−1).

1≤T≤2015
2≤n≤2015
0≤f(i)≤10000
There are at most 10 test cases with n>100.

Output

For each test case, please output the maximum coolness of the completed tree in one line.

Sample Input

2
3
2 1
4
5 1 4

Sample Output

5
19

HINT

 

题意

给你n个点,让你构造出一棵树

假设这棵树最后度数为k的点有num[k]个,那么这棵树的价值为sigma(num[i]*f[i])

其中f[i]是已经给定的

题解:

dp,我们首先给所有点都分配一个度数,那么还剩下n-2个度数没有分配

我们就可以dp了

dp[i]表示当前分配了i点度数时获得的最优值是多少,那么直接暴力转移就好了

背包DP

代码

#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
int n;
int dp[2300];
int f[2300];
int main()
{
    int t;scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        for(int i=0;i<n-1;i++)
            scanf("%d",&f[i]);
        for(int i=0;i<=n;i++)
            dp[i]=-9999999;
        dp[0]=n*f[0];
        for(int i=1;i<n-1;i++)
            f[i]-=f[0];
        n-=2;
        for(int i=1;i<=n;i++)
        {
            for(int j=i;j<=n;j++)
            {
                dp[j]=max(dp[j],dp[j-i]+f[i]);
            }
        }
        printf("%d\n",dp[n]);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值