Spark读写OSS并使用OSS Select来加速查询

Spark读写OSS

基于这篇文章搭建的CDH6以及配置,我们来使Spark能够读写OSS(其他版本的Spark都是类似的做法,不再赘述)。

由于默认Spark并没有将OSS的支持包放到它的CLASSPATH里面,所以我们需要执行如下命令
下面的步骤需要在所有的CDH节点执行

进入到$CDH_HOME/lib/spark目录, 执行如下命令

[root@cdh-master spark]# cd jars/
[root@cdh-master jars]# ln -s ../../../jars/hadoop-aliyun-3.0.0-cdh6.0.1.jar hadoop-aliyun.jar
[root@cdh-master jars]# ln -s ../../../jars/aliyun-sdk-oss-2.8.3.jar aliyun-sdk-oss-2.8.3.jar
[root@cdh-master jars]# ln -s ../../../jars/jdom-1.1.jar jdom-1.1.jar

进入到$CDH_HOME/lib/spark目录,运行一个查询

[root@cdh-master spark]# ./bin/spark-shell
WARNING: User-defined SPARK_HOME (/opt/cloudera/parcels/CDH-6.0.1-1.cdh6.0.1.p0.590678/lib/spark) overrides detected (/opt/cloudera/parcels/CDH/lib/spark).
WARNING: Running spark-class from user-defined location.
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Spark context Web UI available at http://x.x.x.x:4040
Spark context available as 'sc' (master = yarn, app id = application_1540878848110_0004).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.2.0-cdh6.0.1
      /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_152)
Type in expressions to have them evaluated.
Type :help for more information.

scala> val myfile = sc.textFile("oss://{your-bucket-name}/50/store_sales")
myfile: org.apache.spark.rdd.RDD[String] = oss://{your-bucket-name}/50/store_sales MapPartitionsRDD[1] at textFile at <console>:24

scala> myfile.count()
res0: Long = 144004764

scala> myfile.map(line => line.split('|')).filter(_(0).toInt >= 2451262).take(3)
res15: Array[Array[String]] = Array(Array(2451262, 71079, 20359, 154660, 284233, 6206, 150579, 46, 512, 2160001, 84, 6.94, 11.38, 9.33, 681.83, 783.72, 582.96, 955.92, 5.09, 681.83, 101.89, 106.98, -481.07), Array(2451262, 71079, 26863, 154660, 284233, 6206, 150579, 46, 345, 2160001, 12, 67.82, 115.29, 25.36, 0.00, 304.32, 813.84, 1383.48, 21.30, 0.00, 304.32, 325.62, -509.52), Array(2451262, 71079, 55852, 154660, 284233, 6206, 150579, 46, 243, 2160001, 74, 32.41, 34.67, 1.38, 0.00, 102.12, 2398.34, 2565.58, 4.08, 0.00, 102.12, 106.20, -2296.22))

scala> myfile.map(line => line.split('|')).filter(_(0) >= "2451262").saveAsTextFile("oss://{your-bucket-name}/spark-oss-test.1")

Spark支持OSS Select

这篇文章介绍了OSS Select,OSS Select目前已经在深圳区域实现商业化,下面的实验将基于oss-cn-shenzhen.aliyuncs.com这个OSS EndPoint来进行(基于CDH6,其他版本的Spark做法类似)。

部署

下面的步骤需要在所有的CDH节点执行

下载OSS Select的Spark支持包(目前该支持包还在测试中),放到$CDH_HOME/jars下

http://gosspublic.alicdn.com/hadoop-spark/spark-2.2.0-oss-select-0.1.0-SNAPSHOT.tar.gz

[root@cdh-master jars]# pwd
/opt/cloudera/parcels/CDH/jars
[root@cdh-master jars]# ls -ltrh
.....
-rw-r--r-- 1 root root   20K 9月  20 03:45 jsr305-3.0.1.jar
-rw-r--r-- 1 root root  114K 10月 30 16:12 aliyun-java-sdk-core-3.4.0.jar
-rw-r--r-- 1 root root  770K 10月 30 16:12 aliyun-java-sdk-ecs-4.2.0.jar
-rw-r--r-- 1 root root  535K 10月 30 16:12 aliyun-sdk-oss-3.3.0.jar
-rw-r--r-- 1 root root   66K 10月 30 16:12 aliyun-oss-select-spark_2.11-0.1.0-SNAPSHOT.jar
-rw-r--r-- 1 root root   13K 10月 30 16:12 aliyun-java-sdk-sts-3.0.0.jar
-rw-r--r-- 1 root root  211K 10月 30 16:12 aliyun-java-sdk-ram-3.0.0.jar
-rw-r--r-- 1 root root  870K 10月 30 16:13 jaxb-impl-2.2.3-1.jar
-rw-r--r-- 1 root root  150K 10月 30 16:13 jdom-1.1.jar
-rw-r--r-- 1 root root  145K 10月 30 16:13 jersey-json-1.9.jar
-rw-r--r-- 1 root root  448K 10月 30 16:13 jersey-core-1.9.jar
-rw-r--r-- 1 root root   56K 10月 30 16:13 json-20170516.jar
-rw-r--r-- 1 root root   67K 10月 30 16:13 jettison-1.1.jar
-rw-r--r-- 1 root root   26K 10月 30 16:13 stax-api-1.0.1.jar

进入到$CDH_HOME/lib/spark/jars

[root@cdh-master jars]# pwd
/opt/cloudera/parcels/CDH/lib/spark/jars
[root@cdh-master jars]# rm -f aliyun-sdk-oss-2.8.3.jar
[root@cdh-master jars]# ln -s ../../../jars/aliyun-oss-select-spark_2.11-0.1.0-SNAPSHOT.jar aliyun-oss-select-spark_2.11-0.1.0-SNAPSHOT.jar
[root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-core-3.4.0.jar aliyun-java-sdk-core-3.4.0.jar
[root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-ecs-4.2.0.jar aliyun-java-sdk-ecs-4.2.0.jar
[root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-ram-3.0.0.jar aliyun-java-sdk-ram-3.0.0.jar
[root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-sts-3.0.0.jar aliyun-java-sdk-sts-3.0.0.jar
[root@cdh-master jars]# ln -s ../../../jars/aliyun-sdk-oss-3.3.0.jar aliyun-sdk-oss-3.3.0.jar
[root@cdh-master jars]# ln -s ../../../jars/jdom-1.1.jar jdom-1.1.jar

对比测试

这里使用的是spark on yarn,其中Node Manager节点是4个,每个节点最多可以运行4个container,每个container配备的资源是1核2GB内存。
测试数据共630MB,包含3列,分别是姓名、公司和年龄。

[root@cdh-master jars]# hadoop fs -ls oss://select-test-sz/people/
Found 10 items
-rw-rw-rw-   1   63079930 2018-10-30 17:03 oss://select-test-sz/people/part-00000
-rw-rw-rw-   1   63079930 2018-10-30 17:03 oss://select-test-sz/people/part-00001
-rw-rw-rw-   1   63079930 2018-10-30 17:05 oss://select-test-sz/people/part-00002
-rw-rw-rw-   1   63079930 2018-10-30 17:05 oss://select-test-sz/people/part-00003
-rw-rw-rw-   1   63079930 2018-10-30 17:06 oss://select-test-sz/people/part-00004
-rw-rw-rw-   1   63079930 2018-10-30 17:12 oss://select-test-sz/people/part-00005
-rw-rw-rw-   1   63079930 2018-10-30 17:14 oss://select-test-sz/people/part-00006
-rw-rw-rw-   1   63079930 2018-10-30 17:14 oss://select-test-sz/people/part-00007
-rw-rw-rw-   1   63079930 2018-10-30 17:15 oss://select-test-sz/people/part-00008
-rw-rw-rw-   1   63079930 2018-10-30 17:16 oss://select-test-sz/people/part-00009

进入到$CDH_HOME/lib/spark/,启动spark-shell

[root@cdh-master spark]# ./bin/spark-shell
WARNING: User-defined SPARK_HOME (/opt/cloudera/parcels/CDH-6.0.1-1.cdh6.0.1.p0.590678/lib/spark) overrides detected (/opt/cloudera/parcels/CDH/lib/spark).
WARNING: Running spark-class from user-defined location.
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Spark context Web UI available at http://x.x.x.x:4040
Spark context available as 'sc' (master = yarn, app id = application_1540887123331_0008).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.2.0-cdh6.0.1
      /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_152)
Type in expressions to have them evaluated.
Type :help for more information.

scala> val sqlContext = spark.sqlContext
sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@4bdef487

scala> sqlContext.sql("CREATE TEMPORARY VIEW people USING com.aliyun.oss " +
     |   "OPTIONS (" +
     |   "oss.bucket 'select-test-sz', " +
     |   "oss.prefix 'people', " + // objects with this prefix belong to this table
     |   "oss.schema 'name string, company string, age long'," + // like 'column_a long, column_b string'
     |   "oss.data.format 'csv'," + // we only support csv now
     |   "oss.input.csv.header 'None'," +
     |   "oss.input.csv.recordDelimiter '\r\n'," +
     |   "oss.input.csv.fieldDelimiter ','," +
     |   "oss.input.csv.commentChar '#'," +
     |   "oss.input.csv.quoteChar '\"'," +
     |   "oss.output.csv.recordDelimiter '\n'," +
     |   "oss.output.csv.fieldDelimiter ','," +
     |   "oss.output.csv.quoteChar '\"'," +
     |   "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " +
     |   "oss.accessKeyId 'Your Access Key Id', " +
     |   "oss.accessKeySecret 'Your Access Key Secret')")
res0: org.apache.spark.sql.DataFrame = []

scala>   val sql: String = "select count(*) from people where name like 'Lora%'"
sql: String = select count(*) from people where name like 'Lora%'

scala>   sqlContext.sql(sql).show()
+--------+
|count(1)|
+--------+
|   31770|
+--------+

scala> val textFile = sc.textFile("oss://select-test-sz/people/")
textFile: org.apache.spark.rdd.RDD[String] = oss://select-test-sz/people/ MapPartitionsRDD[8] at textFile at <console>:24

scala> textFile.map(line => line.split(',')).filter(_(0).startsWith("Lora")).count()
res3: Long = 31770

然后我们分别看使用OSS Select与不使用OSS Select的时间对比,可以看到,使用OSS Select的时间是不使用OSS Select时间的四分之一。
_2018_10_30_5_35_25

Spark对接OSS Select支持包的实现(Preview)

我们通过扩展Spark的DataSource API来实现Spark对接OSS Select。通过实现PrunedFilteredScan,我们可以把需要的列和过滤条件下推到OSS Select执行。目前这个支持包还在开发中,定义的规范如下:

scala> sqlContext.sql("CREATE TEMPORARY VIEW people USING com.aliyun.oss " +
     |   "OPTIONS (" +
     |   "oss.bucket 'select-test-sz', " +
     |   "oss.prefix 'people', " + // objects with this prefix belong to this table
     |   "oss.schema 'name string, company string, age long'," + // like 'column_a long, column_b string'
     |   "oss.data.format 'csv'," + // we only support csv now
     |   "oss.input.csv.header 'None'," +
     |   "oss.input.csv.recordDelimiter '\r\n'," +
     |   "oss.input.csv.fieldDelimiter ','," +
     |   "oss.input.csv.commentChar '#'," +
     |   "oss.input.csv.quoteChar '\"'," +
     |   "oss.output.csv.recordDelimiter '\n'," +
     |   "oss.output.csv.fieldDelimiter ','," +
     |   "oss.output.csv.quoteChar '\"'," +
     |   "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " +
     |   "oss.accessKeyId 'Your Access Key Id', " +
     |   "oss.accessKeySecret 'Your Access Key Secret')")
字段说明
oss.bucket数据所在的bucket
oss.prefix拥有这个前缀的Object都属于定义的这个TEMPORARY VIEW
oss.schema这个 TEMPORARY VIEW的schema,目前通过字符串指定,后续会通过一个文件来指定schema
oss.data.format数据内容的格式,目前支持CSV格式,其他格式也会陆续支持
oss.input.csv.*定义CSV输入格式参数
oss.output.csv.*定义CSV输出格式参数
oss.endpointbucket所在的Endpoint
oss.accessKeyId你的Access Key Id
oss.accessKeySecret你的Access Key Secret

目前只定义基本参数,可以参考OSS Select API文档,其余的参数也在支持中。

支持的过滤条件:=,<,>,<=, >=,||,or,not,and,in,like(StringStartsWith,StringEndsWith,StringContains)。对于不能下推的过滤条件(如算术运算、字符串拼接等,这些通过PrunedFilteredScan获取不到),则只下推需要的列到OSS Select。

然而,OSS Select还支持其他过滤条件,可以参考OSS Select API文档

对比TPC-H的查询

主要对比TPC-H中query1.sql对于lineitem这个table的查询性能,为了能使OSS Select过滤更多的数据,我们将where条件改一下(由l_shipdate <= '1998-09-16'改为where l_shipdate > '1997-09-16'),测试数据大小是2.27GB

[root@cdh-master ~]# hadoop fs -ls oss://select-test-sz/data/lineitem.csv
-rw-rw-rw-   1 2441079322 2018-10-31 11:18 oss://select-test-sz/data/lineitem.csv

对比如下

scala> import org.apache.spark.sql.types.{IntegerType, LongType, StringType, StructField, StructType, DoubleType}
import org.apache.spark.sql.types.{IntegerType, LongType, StringType, StructField, StructType, DoubleType}

scala> import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.sql.{Row, SQLContext}

scala> val sqlContext = spark.sqlContext
sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@74e2cfc5

scala> val textFile = sc.textFile("oss://select-test-sz/data/lineitem.csv")
textFile: org.apache.spark.rdd.RDD[String] = oss://select-test-sz/data/lineitem.csv MapPartitionsRDD[1] at textFile at <console>:26

scala> val dataRdd = textFile.map(_.split('|'))
dataRdd: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[2] at map at <console>:28

scala> val schema = StructType(
     |     List(
     |         StructField("L_ORDERKEY",LongType,true),
     |         StructField("L_PARTKEY",LongType,true),
     |         StructField("L_SUPPKEY",LongType,true),
     |         StructField("L_LINENUMBER",IntegerType,true),
     |         StructField("L_QUANTITY",DoubleType,true),
     |         StructField("L_EXTENDEDPRICE",DoubleType,true),
     |         StructField("L_DISCOUNT",DoubleType,true),
     |         StructField("L_TAX",DoubleType,true),
     |         StructField("L_RETURNFLAG",StringType,true),
     |         StructField("L_LINESTATUS",StringType,true),
     |         StructField("L_SHIPDATE",StringType,true),
     |         StructField("L_COMMITDATE",StringType,true),
     |         StructField("L_RECEIPTDATE",StringType,true),
     |         StructField("L_SHIPINSTRUCT",StringType,true),
     |         StructField("L_SHIPMODE",StringType,true),
     |         StructField("L_COMMENT",StringType,true)
     |     )
     | )
schema: org.apache.spark.sql.types.StructType = StructType(StructField(L_ORDERKEY,LongType,true), StructField(L_PARTKEY,LongType,true), StructField(L_SUPPKEY,LongType,true), StructField(L_LINENUMBER,IntegerType,true), StructField(L_QUANTITY,DoubleType,true), StructField(L_EXTENDEDPRICE,DoubleType,true), StructField(L_DISCOUNT,DoubleType,true), StructField(L_TAX,DoubleType,true), StructField(L_RETURNFLAG,StringType,true), StructField(L_LINESTATUS,StringType,true), StructField(L_SHIPDATE,StringType,true), StructField(L_COMMITDATE,StringType,true), StructField(L_RECEIPTDATE,StringType,true), StructField(L_SHIPINSTRUCT,StringType,true), StructField(L_SHIPMODE,StringType,true), StructField(L_COMMENT,StringType,true))

scala> val dataRowRdd = dataRdd.map(p => Row(p(0).toLong, p(1).toLong, p(2).toLong, p(3).toInt, p(4).toDouble, p(5).toDouble, p(6).toDouble, p(7).toDouble, p(8), p(9), p(10), p(11), p(12), p(13), p(14), p(15)))
dataRowRdd: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[3] at map at <console>:30

scala> val dataFrame = sqlContext.createDataFrame(dataRowRdd, schema)
dataFrame: org.apache.spark.sql.DataFrame = [L_ORDERKEY: bigint, L_PARTKEY: bigint ... 14 more fields]

scala> dataFrame.createOrReplaceTempView("lineitem")

scala> spark.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from lineitem where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()
+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+
|l_returnflag|l_linestatus|    sum_qty|      sum_base_price|      sum_disc_price|          sum_charge|           avg_qty|         avg_price|           avg_disc|count_order|
+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+
|           N|           O|7.5697385E7|1.135107538838699...|1.078345555027154...|1.121504616321447...|25.501957856643052|38241.036487881756|0.04999335309103123|    2968297|
+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+

scala> sqlContext.sql("CREATE TEMPORARY VIEW item USING com.aliyun.oss " +
     |   "OPTIONS (" +
     |   "oss.bucket 'select-test-sz', " +
     |   "oss.prefix 'data', " +
     |   "oss.schema 'L_ORDERKEY long, L_PARTKEY long, L_SUPPKEY long, L_LINENUMBER int, L_QUANTITY double, L_EXTENDEDPRICE double, L_DISCOUNT double, L_TAX double, L_RETURNFLAG string, L_LINESTATUS string, L_SHIPDATE string, L_COMMITDATE string, L_RECEIPTDATE string, L_SHIPINSTRUCT string, L_SHIPMODE string, L_COMMENT string'," +
     |   "oss.data.format 'csv'," + // we only support csv now
     |   "oss.input.csv.header 'None'," +
     |   "oss.input.csv.recordDelimiter '\n'," +
     |   "oss.input.csv.fieldDelimiter '|'," +
     |   "oss.input.csv.commentChar '#'," +
     |   "oss.input.csv.quoteChar '\"'," +
     |   "oss.output.csv.recordDelimiter '\n'," +
     |   "oss.output.csv.fieldDelimiter ','," +
     |   "oss.output.csv.commentChar '#'," +
     |   "oss.output.csv.quoteChar '\"'," +
     |   "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " +
     |   "oss.accessKeyId 'Your Access Key Id', " +
     |   "oss.accessKeySecret 'Your Access Key Secret')")
res2: org.apache.spark.sql.DataFrame = []

scala> sqlContext.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from item where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()

scala> sqlContext.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from item where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()
+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+
|l_returnflag|l_linestatus|    sum_qty|      sum_base_price|      sum_disc_price|          sum_charge|           avg_qty|        avg_price|           avg_disc|count_order|
+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+
|           N|           O|7.5697385E7|1.135107538838701E11|1.078345555027154...|1.121504616321447...|25.501957856643052|38241.03648788181|0.04999335309103024|    2968297|
+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+

耗时对比如下
14_32_58__10_31_2018

其中使用Spark SQL与在Spark SQL上使用OSS Select耗时分别是2.5分钟和38秒。

参考文章

https://yq.aliyun.com/articles/593910
https://yq.aliyun.com/articles/659735
https://yq.aliyun.com/articles/658473
https://mapr.com/blog/spark-data-source-api-extending-our-spark-sql-query-engine/

好的,您想了解如何使用Fluentd读写OSS,我可以为您提供一些基本信息。首先,Fluentd是一种开源的数据收集和转发引擎,它可以将来自不同数据源的数据进行聚合、过滤、转换和输出。而OSS(Object Storage Service)是阿里云提供的一种云端对象存储服务,可以用来存储和管理各种类型的非结构化数据,如图片、视频、文本等。下面是使用Fluentd读写OSS的基本步骤: 1. 安装Fluentd和相应的OSS插件。您可以在Fluentd的官网上下载和安装最新版本的Fluentd,然后使用以下命令安装OSS插件: ``` gem install fluent-plugin-oss ``` 2. 配置Fluentd。您需要在Fluentd的配置文件中添加OSS输出插件的相关信息,如OSS的访问密钥、Bucket名称、Region等。以下是一个示例配置: ``` <match oss.*> @type oss oss_key_id YOUR_ACCESS_KEY_ID oss_access_key YOUR_ACCESS_KEY_SECRET oss_bucket YOUR_BUCKET_NAME oss_region YOUR_BUCKET_REGION <buffer> @type memory flush_interval 10s </buffer> </match> ``` 3. 使用Fluentd向OSS写入数据。您可以使用Fluentd的in_tail插件来监控日志文件,将其输出到OSS中。以下是一个示例配置: ``` <source> @type tail path /path/to/your/log/file pos_file /var/log/td-agent/your_log.pos tag oss.your_log format json <parse> @type json </parse> </source> <match oss.your_log> @type oss oss_key_id YOUR_ACCESS_KEY_ID oss_access_key YOUR_ACCESS_KEY_SECRET oss_bucket YOUR_BUCKET_NAME oss_region YOUR_BUCKET_REGION <buffer> @type memory flush_interval 10s </buffer> </match> ``` 4. 从OSS中读取数据。您可以使用Fluentd的in_oss插件来读取OSS中的数据,将其输出到其他数据源中。以下是一个示例配置: ``` <source> @type oss oss_key_id YOUR_ACCESS_KEY_ID oss_access_key YOUR_ACCESS_KEY_SECRET oss_bucket YOUR_BUCKET_NAME oss_prefix YOUR_OBJECT_PREFIX oss_endpoint YOUR_BUCKET_ENDPOINT format json tag oss.your_data </source> <match oss.your_data> @type stdout </match> ``` 这些是使用Fluentd读写OSS的基本步骤,您可以根据自己的需求进行配置和调整。需要注意的是,使用Fluentd读写OSS可能会产生一定的费用,具体费用和计费方式可以参考阿里云的官方文档。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值