eBCC性能分析最佳实践(2) - 一个简单的eBCC分析网络函数的latency ...

本文详细介绍eBCC性能分析工具集,涵盖TCP链接建立的延迟分析,以及网络函数send和recv的次数与延迟统计。通过具体示例,展示如何使用eBCC工具进行系统性能优化调试与问题诊断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Guide:

0. Intro

BCC是基于4.x kernel版本上的ebpf发展出来的一套性能分析工具集;

eBCC,顾名思义则是extended BCC的缩写,是阿里巴巴内核团队在Aliyun Linux 2上对BCC项目的拓展,包含BCC本身已有的工具集,和我们新开发的一些小的工具; eBCC则是基于在最新的BCC版本0.9之上做了一些拓展。

Aliyun Linux则使用了相对比较前沿,较新的kernel版本,支持ebpf特性,所以,如果想尝试ebpf,eBCC带来的系统上对“性能优化调试” 和 “问题诊断”上的新体验,那就请赶快升级到Aliyun Linux 2上吧。

1. 建立tcp链接,分析latency

场景

  1. 建立tcp链接,分析网络函数的latency
  2. tcp传输,send,recv 次数和latency统计

client

client发起connect链接时的监控

/usr/share/ebcc/tools/tcpconnect

server

server accept时的监控

/usr/share/ebcc/tools/tcpaccept

client latency

client 发起connect() 的latency

/usr/share/ebcc/tools/tcpconnlat

2. tcp传输,send,recv 次数和latency统计

client send latency

Client: 

[root@xxx /home/ahao.mah/socket]
#./client1
hello muahao
^@

Server: 

[root@xxx /home/ahao.mah/socket]
#./server1

latency:

[root@xxx ]
#/usr/share/ebcc/tools/funclatency -i 1 c:send  -p 65035
Tracing 1 functions for "c:send"... Hit Ctrl-C to end.
     nsecs               : count     distribution
         0 -> 1          : 0        |                                        |
         2 -> 3          : 0        |                                        |
         4 -> 7          : 0        |                                        |
         8 -> 15         : 0        |                                        |
        16 -> 31         : 0        |                                        |
        32 -> 63         : 0        |                                        |
        64 -> 127        : 0        |                                        |
       128 -> 255        : 0        |                                        |
       256 -> 511        : 0        |                                        |
       512 -> 1023       : 0        |                                        |
      1024 -> 2047       : 0        |                                        |
      2048 -> 4095       : 0        |                                        |
      4096 -> 8191       : 0        |                                        |
      8192 -> 16383      : 0        |                                        |
     16384 -> 32767      : 1        |****************************************|

Example

Client:

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>

#define MYPORT  8887
#define BUFFER_SIZE 1024
#define DST_IP "10.137.16.6"

int main()
{
    ///定义sockfd
    int sock_cli = socket(AF_INET,SOCK_STREAM, 0);

    ///定义sockaddr_in
    struct sockaddr_in servaddr;
    memset(&servaddr, 0, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    servaddr.sin_port = htons(MYPORT);  ///服务器端口
    servaddr.sin_addr.s_addr = inet_addr(DST_IP);  ///服务器ip

    ///连接服务器,成功返回0,错误返回-1
    if (connect(sock_cli, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0)
    {
        perror("connect");
        exit(1);
    }

    char sendbuf[BUFFER_SIZE];
    char recvbuf[BUFFER_SIZE];
    while (fgets(sendbuf, sizeof(sendbuf), stdin) != NULL)
    {
        send(sock_cli, sendbuf, strlen(sendbuf),0); ///发送
        if(strcmp(sendbuf,"exit\n")==0)
            break;
        recv(sock_cli, recvbuf, sizeof(recvbuf),0); ///接收
        fputs(recvbuf, stdout);

        memset(sendbuf, 0, sizeof(sendbuf));
        memset(recvbuf, 0, sizeof(recvbuf));
    }

    close(sock_cli);
    return 0;
}

Server:

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>

#define MYPORT  8887
#define QUEUE   20
#define BUFFER_SIZE 1024

int main()
{
    ///定义sockfd
    int server_sockfd = socket(AF_INET,SOCK_STREAM, 0);

    ///定义sockaddr_in
    struct sockaddr_in server_sockaddr;
    server_sockaddr.sin_family = AF_INET;
    server_sockaddr.sin_port = htons(MYPORT);
    server_sockaddr.sin_addr.s_addr = htonl(INADDR_ANY);

    ///bind,成功返回0,出错返回-1
    if(bind(server_sockfd,(struct sockaddr *)&server_sockaddr,sizeof(server_sockaddr))==-1)
    {
        perror("bind");
        exit(1);
    }

    ///listen,成功返回0,出错返回-1
    if(listen(server_sockfd,QUEUE) == -1)
    {
        perror("listen");
        exit(1);
    }

    ///客户端套接字
    char buffer[BUFFER_SIZE];
    struct sockaddr_in client_addr;
    socklen_t length = sizeof(client_addr);

    ///成功返回非负描述字,出错返回-1
    int conn = accept(server_sockfd, (struct sockaddr*)&client_addr, &length);
    if(conn<0)
    {
        perror("connect");
        exit(1);
    }

    while(1)
    {
        memset(buffer,0,sizeof(buffer));
        int len = recv(conn, buffer, sizeof(buffer),0);
        if(strcmp(buffer,"exit\n")==0)
            break;
        fputs(buffer, stdout);
        send(conn, buffer, len, 0);
    }
    close(conn);
    close(server_sockfd);
    return 0;
}
液晶屏背光的LED驱动电路设计需要关注电流控制、温度管理以及亮度调节,以确保光电显示性能稳定。HV9911芯片因其优异的性能,被广泛应用于背光驱动电路设计中。该芯片可提供恒定的LED驱动电流,保证了背光亮度的均匀性,同时也具备过热保护功能,避免因温度过高导致的光电性能下降。以下是设计要点: 参考资源链接:[液晶屏背光LED驱动电路图](https://wenku.csdn.net/doc/6401ac6ccce7214c316ebcc3?spm=1055.2569.3001.10343) 1. 电流设置:HV9911通过外部电阻来设定LED的工作电流。需要根据液晶屏的背光需求,计算并选择合适的电阻值,以确保LED工作在最佳电流状态。 2. 稳压:在设计电路时,应考虑使用稳压电源,以消除电压波动对LED亮度的影响。 3. 温度管理:使用温度传感器监测背光模块的温度,结合HV9911的过热保护功能,自动调整LED电流,防止因温度过高而损坏LED或影响显示效果。 4. 调光控制:通过PWM(脉冲宽度调制)信号控制HV9991的使能引脚,实现调光功能,以适应不同的环境光线条件,保持显示效果的稳定性。 5. PCB布局:在PCB布局时,要保证电路板散热良好,尽量减少走线电阻,以降低功率损耗。 6. 电磁兼容性(EMC):设计时还需考虑电磁兼容性问题,合理布局以减少电磁干扰。 通过上述措施,可以设计出一个性能稳定、效率高的液晶屏背光LED驱动电路。若需要更深入的设计指导和实践案例,建议参考《液晶屏背光LED驱动电路图》这一资源,其中详细介绍了HV9911芯片的应用,以及电路图实例和调试方法,对理解电路设计与优化过程有着非常大的帮助。 参考资源链接:[液晶屏背光LED驱动电路图](https://wenku.csdn.net/doc/6401ac6ccce7214c316ebcc3?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值