题目大意:由一堆石子, 给出石子的总数, 接下来由stan和ollie两个人玩游戏,给出n, 在给出n种取石子的方法(即为每次可取走石子的数量),由stan先,两人轮流取走石子,最后一个将石子全部去完的人胜利,问, 给出的一堆石子, 两人均按最好的方案游戏, 最后将会是谁胜 ?
解题思路:问题可以看做是一个完全背包的变形, dp[i]只有0 和1两种状态, 1 是代表当前i个石子先取者为必胜, 0 带表当前n个石子先取者为必败。转态转移方程if (dp[i - val[j]] == 0) dp[i] = 1;(当前状态可以转化成先手必败,说明当前为先手必胜)。
#include <stdio.h>
#include <string.h>
const int N = 1000005;
int n, m, dp[N], val[20];
int main() {
while (scanf("%d%d", &n, &m) == 2) {
memset(dp, 0, sizeof(dp));
memset(val, 0, sizeof(val));
for (int i = 0; i < m; i++)
scanf("%d", &val[i]);
for (int i = 1; i <= n; i++) {
for (int j = 0; j < m; j++)
if (i - val[j] >= 0 && !dp[i - val[j]]) {
dp[i] = 1;
break;
}
}
printf("%s\n", dp[n] ? "Stan wins" : "Ollie wins");
}
return 0;
}