【吴恩达机器学习】学习笔记——梯度下降

本文介绍了梯度下降算法的工作原理及应用。通过不断调整参数使代价函数逐渐减小,直至达到局部最小值。文章详细解释了算法的具体步骤,并强调了学习速率的重要性。

 梯度下降算法能够帮助我们快速得到代价函数的最小值

算法思路:

  • 以某一参数为起始点
  • 寻找下一个参数使得代价函数的值减小,直到得到局部最小值

梯度下降算法:

  • 重复下式直至收敛(收敛是指得到局部最低点的θj后,偏导数的值为零,θj不会再改变)
  • 并且各参数θ0,...,θn必须同时更新,即所有的θj值全部都计算得到新值之后才将参数值代入到代价函数中

上式中的α是学习速率,决定了θj移动的步伐大小。如果α太小,那么θj就会更新的很慢;但是如果α太大,θj就有可能越过最低点,导致偏导数越来越大,最终远离最低点不收敛。

而上式的偏导数的作用十分巧妙,当θj越来越接近局部最低点时,相应地,偏导数会越来越小,因此θj更新的幅度会越来越小,直至收敛。

转载于:https://www.cnblogs.com/JJJanepp/p/8454599.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值