java动态规划凑硬币问题_动态规划 凑硬币问题

本文介绍了使用动态规划解决凑硬币问题,例如如何用1元、3元、5元硬币凑出11元,使得硬币数量最少。通过状态转移方程 `d(i)=min{d(j)+1}`,从最小面值开始计算,找到最优解。此外,还讨论了如何调整算法以找出最多需要多少个硬币来凑出指定金额。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

凑硬币问题

假设有 1 元,3 元,5 元的硬币若干(无限),现在需要凑出 11 元,问如何组合才能使硬币的数量最少?

用数组d来存储当前每个面值可以对应的合成的最小数量

d(i) = d(j) + 1

这里 j < i。通俗地讲,我们需要凑出 i 元,就在凑出 j 的结果上再加上某一个硬币就行了。

那这里加上的哪个硬币呢。把每个硬币试一下就行了:

1.假设最后加上的是 1 元硬币,那 d(i) = d(j) + 1 = d(i - 1) + 1。

2.假设最后加上的是 3 元硬币,那 d(i) = d(j) + 1 = d(i - 3) + 1。

3.假设最后加上的是 5 元硬币,那 d(i) = d(j) + 1 = d(i - 5) + 1。

我们分别计算出 d(i - 1) + 1,d(i - 3) + 1,d(i - 5) + 1 的值,取其中的最小值,即为最优解,也就是 d(i)。

状态转移方程 d(i)=min{d(j)+1},if i>j

d(0)=0;

d(1)=1;

d(2)=d(1)+1=2;

d(3)=min{d(2)+1,d(0)+1}=1;

d(4)=min{d(3)+1,d(1)+1}=2;

d(5)=min{d(4)+1,d(2)+1,d(0)+1}=1;

好的,我会尽力为您解答。首先,让我们来了解一下硬币问题。 在硬币问题中,我们需要找到最少的硬币数来成给定的金额。例如,如果我们需要成 11 元,而有 1 元、2 元、5 元三种不同面值的硬币可供使用,那么最少需要使用 3 枚硬币,即 5 元、5 元和 1 元。 下面是一种使用动态规划解决硬币问题的方法: 1. 创建一个长度为 amount+1 的数组 dp,其中 dp[i] 表示成面值为 i 元所需的最少硬币数。 2. 初始化 dp[0] 为 0,其余元素初始化为一个较大的数(例如 amount+1),表示当前面值无法被成。 3. 遍历硬币数组 coins,对于每个硬币,遍历 dp 数组,更新 dp[j] 的值为 dp[j-coins[i]]+1,其中 j>=coins[i],表示当前面值可以被成。 4. 最终 dp[amount] 就是成 amount 元所需的最少硬币数,如果 dp[amount]>amount,则表示无法成给定金额。 下面是使用 JavaScript 实现该算法的代码: ```javascript function coinChange(coins, amount) { const dp = new Array(amount + 1).fill(amount + 1); dp[0] = 0; for (let i = 0; i < coins.length; i++) { for (let j = coins[i]; j <= amount; j++) { dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1); } } return dp[amount] > amount ? -1 : dp[amount]; } ``` 这个函数接受两个参数,一个是硬币数组 coins,另一个是需要成的金额 amount。最终返回成 amount 元所需的最少硬币数,如果无法成则返回 -1。 例如,若 coins = [1, 2, 5],amount = 11,则 coinChange(coins, amount) 的返回值为 3,表示成 11 元最少需要 3 枚硬币。 希望这个简单的解释和代码能够帮到您,如果您还有其他问题,请随时问我。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值