学过空间插值的人都知道克里金插值,但是它的变种繁多、公式复杂,还有个半方差函数让人不知所云
本文讲简单介绍基本克里金插值的原理,及其推理过程,全文分为九个部分:
0.引言-从反距离插值说起
1.克里金插值的定义
2.假设条件
3.无偏约束条件
4.优化目标/代价函数
5.代价函数的最优解
6.半方差函数
7.普通克里金与简单克里金
8.小结
0.引言——从反距离插值(IDW)说起
空间插值问题,就是在已知空间上若干离散点 \((x_i,y_i)\) 的某一属性(如气温,海拔)的观测值\(z_i=z(x_i,y_i)\)的条件下,估计空间上任意一点\((x,y)\)的属性值的问题。
直观来讲,根据地理学第一定律,
All attribute values on a geographic surface are related to each other, but closer values are more strongly related than are more distant ones.
大意就是,地理属性有空间相关性,相近的事物会更相似。由此人们发明了反距离插值,对于空间上任意一点\((x,y)\)的属性\(z=z(x,y)\),定义反距离插值公式估计量
\[\hat{z} = \sum^{n}_{i=1}{\frac{1}{d^\alpha}z_i}\]
其中\(\alpha\)通常取1或者2。
即,用空间上所有已知点的数据加权求和来估计未知点的值,权重取决于距离的倒数(或者倒数的平方)。那么,距离近的点,权重就大;距离远的点,权重就小。
反距离插值可以有效的基于地理学第一定律估计属性值空间分布,但仍然存在很多问题:
\(\alpha\)的值不确定
用倒数函数来描述空间关联程度不够准确
因此更加准确的克里金插值方法被提出来了
1.克里金插值的定义
相比反距离插值,克里金插值公式更加抽象
\[\hat{z_o} = \sum^{n}_{i=1}{\lambda_iz_i}\]
其中\(\hat{z_o}\)是点\((x_o,y_o)\)处的估计值,即\(z_o=z(x_o,y_o)\) 。
这里的\(\lambda_i\)是权重系数。它同样是用空间上所有已知点的数据加权求和来估计未知点的值。但权重系数并非距离的倒数,而是能够满足点\((x_o,y_o)\)处的估计值\(\hat{z_o}\)与真实值\(z_o\)的差最小的一套最优系数,即
\[\min_{\lambda_i} Var(\hat{z_o}-z_o)\]
同时满足无偏估计的条件
\[E(\hat{z_o}-z_o)=0\]
2.假设条件
不同的克里金插值方法的主要差异就是假设条件不同。本文仅介绍普通克里金插值的假设条件与应用。
普通克里金插值的假设条件为,空间属性\(z\)是均一的。对于空间任意一点\((x,y)\),都有同样的期望c与方差\(\sigma^2\)。
即对任意点\((x,y)\)都有
\[E[z(x,y)] = E[z] = c\]
\[Var[z(x,y)] = \sigma^2\]
换一种说法:任意一点处的值\(z(x,y)\),都由区域平均值\(c\)和该点的随机偏差\(R(x,y)\)组成,即
\[z(x,y)=E[z(x,y)] + R(x,y)] = c + R(x,y)\]
其中\(R(x,y)\)表示点\((x,y)\)处的偏差,其方差均为常数
\[Var[R(x,y)] = \sigma^2\]
3.无偏约束条件
先分析无偏估计条件\(E(\hat{z_o}-z_o)=0\),将\(\hat{z_o} = \sum^{n}_{i=1}{\lambda_iz_i}\)带入则有
\[E(\sum^{