威尔逊定理--HDU2973

博客围绕HDU - 2973题目展开,该题要求根据给定自然数n计算特定式子的值。解题思路运用了威尔逊定理及其逆定理、前缀和,当(3k + 7)为素数时对应值为1,否则为0。还提及素数定理,最后给出代码参考链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考博客
HDU-2973

题目

Problem Description

The math department has been having problems lately. Due to immense amount of unsolicited automated programs which were crawling across their pages, they decided to put Yet-Another-Public-Turing-Test-to-Tell-Computers-and-Humans-Apart on their webpages. In short, to get access to their scientific papers, one have to prove yourself eligible and worthy, i.e. solve a mathematic riddle.

However, the test turned out difficult for some math PhD students and even for some professors. Therefore, the math department wants to write a helper program which solves this task (it is not irrational, as they are going to make money on selling the program).

The task that is presented to anyone visiting the start page of the math department is as follows: given a natural n, compute
img
where [x] denotes the largest integer not greater than x.

Input

The first line contains the number of queries t (t <= 10^6). Each query consist of one natural number n (1 <= n <= 10^6).

Output

For each n given in the input output the value of Sn.

Sample Input

13
1
2
3
4
5
6
7
8
9
10
100
1000
10000

Sample Output

0
1
1
2
2
2
2
3
3
4
28
207
1609

思路

威尔逊定理及其逆定理、前缀和

威尔逊定理:当且仅当p为素数时:
\[ (p-1)!\equiv -1(mod\ p) \]
否则
\[ (p-1)!\equiv 0(mod\ p) \]


\[ a_n=[\frac {(3k+6)!+1}{3k+7}-[\frac {(3k+6)!}{3k+7}]] \]
所以当(3k+7)为素数时,a_n为1,否则为0
\[ [\frac {(3k+6)!+1}{3k+7}-[\frac {(3k+6)!}{3k+7}]]=[\frac {kp+p-1+1}{p}-[\frac {kp+p-1}{p}]]=[k+1-k]=1 \]

代码

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <string>
#include <algorithm>

using namespace std;

typedef long long LL;
const int maxn=1e6+5;
const double pi = acos(-1);
const int mod=1e9+7;
const int N = 1000005;

int vis[N * 4], p[N * 4];
int ans[N];
void Init()\\埃式筛
{
    for(int i = 2;(i - 7) / 3 < N;++i)
    {
        if(!vis[i])
        {
            if((i - 7) % 3 == 0)
                p[(i - 7) / 3] = 1;
            for(int j = i + i;j <= N * 4;j += i)
                vis[j] = true;
        }
    }
    for(int i = 1;i < N;++i)
        ans[i] = ans[i - 1] + p[i];
}

int main()
{
    Init();
    int T;
    cin >> T;
    while(T--)
    {
        int n;
        cin >> n;
        cout << ans[n] << endl;
    }
    return 0;
}

[素数定理](https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
当a、b为素数时,则形如 a+nb 的素数有无穷多个

转载于:https://www.cnblogs.com/shuizhidao/p/10554414.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值