CDQ分治嵌套模板:多维偏序问题

本文详细介绍了使用CDQ分治解决四维和五维偏序问题的方法,包括代码实现细节。通过多层CDQ分治逐步减少维度影响,最终求解偏序问题。

CDQ分治2

CDQ套CDQ:四维偏序问题

题目来源:COGS 2479 偏序

#define LEFT 0
#define RIGHT 1

struct Node{int a,b,c,d,bg;};
Node q[_],tmp1[_],tmp2[_];  int aa,bb,cc,dd,n; long long Ans;

void cdq2(RG int L,RG int R){
    if(L == R)return;
    RG int mid = (L+R)>>1; cdq2(L,mid); cdq2(mid+1,R);
    RG int oo = L , l = L , r = mid + 1;
    while(l <= mid && r <= R){
        if(tmp1[l].c < tmp1[r].c){
            if(tmp1[l].bg == LEFT)BIT:: Update(tmp1[l].d);
            tmp2[oo++] = tmp1[l++];
        }
        else {
            if(tmp1[r].bg == RIGHT)Ans += BIT::Query(tmp1[r].d);
            tmp2[oo++] = tmp1[r++];
        }
    }
    while(l <= mid)tmp2[oo++] = tmp1[l++];
    while(r <= R){
        if(tmp1[r].bg == RIGHT)Ans += BIT::Query(tmp1[r].d) ;
        tmp2[oo++] = tmp1[r++];
    }
    for(RG int i = L; i <= R; i ++){
        if(tmp2[i].bg == LEFT)BIT::Clear(tmp2[i].d);
        tmp1[i] = tmp2[i];
    }
    return;
}

void cdq1(int L,int R){
    if(L == R)return;
    RG int mid = (L+R)>>1; cdq1(L,mid);  cdq1(mid+1,R);
    RG int oo = L , l = L ,r = mid + 1;
    while(l <= mid && r <= R){
        if(q[l].b < q[r].b)
           q[l].bg = LEFT ,
           tmp1[oo++] = q[l++] ;
        else 
           q[r].bg = RIGHT , 
           tmp1[oo++] = q[r++] ;
    }
    while(l <= mid)q[l].bg = LEFT , tmp1[oo++] = q[l++];
    while(r <= R)q[r].bg = RIGHT , tmp1[oo++] = q[r++];
    for(RG int i = L; i <= R; i ++)q[i] = tmp1[i];
    cdq2(L,R);
}

int main(){
    freopen("partial_order.in","r",stdin);
    freopen("partial_order.out","w",stdout);
    n = gi();
    for(RG int i = 1; i <= n; i ++)q[i].a = i; 
    for(RG int i = 1; i <= n; i ++)q[i].b = gi(); 
    for(RG int i = 1; i <= n; i ++)q[i].c = gi(); 
    for(RG int i = 1; i <= n; i ++)q[i].d = gi(); 
    Ans = 0; cdq1(1,n);
    cout<<Ans;  return 0;   
}

CDQ套CDQ套CDQ:五维偏序问题

题目来源:COGS 2580 偏序 \(II\)

#define LEFT 0
#define RIGHT 1

struct Node{int d1,d2,d3,d4,d5,bg[2];};
Node q[_] , tmp1[_] , tmp2[_] , tmp3[_];  int n; long long ans;

IL bool Check(RG int id,RG int opt)
{return tmp2[id].bg[0]==opt && tmp2[id].bg[1]==opt;}

void cdq3(RG int L,RG int R){      //cdq分治解决三维偏序问题 
    if(L == R)return;
    RG int mid = (L+R)>>1; cdq3(L,mid); cdq3(mid+1,R);
    RG int l = L , r = mid+1 , oo = L-1;
    while(l <= mid && r <= R){
        if(tmp2[l].d4 < tmp2[r].d4){
            if(Check(l,LEFT))BIT::Update(tmp2[l].d5);
            tmp3[++oo] = tmp2[l++];
        }
        else{
            if(Check(r,RIGHT))ans += BIT::Query(tmp2[r].d5);
            tmp3[++oo] = tmp2[r++];
        }
    }
    while(l <= mid)tmp3[++oo] = tmp2[l++];
    while(r <= R){
        if(Check(r,RIGHT))ans += BIT::Query(tmp2[r].d5);
        tmp3[++oo] = tmp2[r++];
    }
    for(RG int i = L; i <= R; i ++){
       if(Check(i,LEFT))BIT::Clear(tmp2[i].d5);
       tmp2[i] = tmp3[i];
    }
    return;
    
}

void cdq2(RG int L,RG int R){       //消去第三维的影响 
    if(L == R)return;
    RG int mid = (L+R)>>1; cdq2(L,mid); cdq2(mid+1,R);
    RG int l = L , r = mid+1 , oo = L-1;
    while(l <= mid && r <= R){
        if(tmp1[l].d3 < tmp1[r].d3)
            tmp1[l].bg[1] = LEFT , tmp2[++oo] = tmp1[l++];
        else
            tmp1[r].bg[1] = RIGHT , tmp2[++oo] = tmp1[r++];
    }
    while(l <= mid)tmp1[l].bg[1] = LEFT , tmp2[++oo] = tmp1[l++];
    while(r <= R)tmp1[r].bg[1] = RIGHT , tmp2[++oo] = tmp1[r++];
    for(RG int i = L; i <= R; i ++)tmp1[i] = tmp2[i];
    cdq3(L,R); 
    
}

void cdq1(RG int L,RG int R){         //消去第二维的影响 
    if(L == R)return;
    RG int mid = (L+R)>>1; cdq1(L,mid); cdq1(mid+1,R);
    RG int l = L , r = mid+1 , oo = L-1;
    while(l <= mid && r <= R){
        if(q[l].d2 < q[r].d2)
            q[l].bg[0] = LEFT , tmp1[++oo] = q[l++];
        else 
            q[r].bg[0] = RIGHT , tmp1[++oo] = q[r++];
    } 
    while(l<=mid)q[l].bg[0] = LEFT , tmp1[++oo] = q[l++];
    while(r<=R)q[r].bg[0] = RIGHT , tmp1[++oo] = q[r++];
    for(RG int i = L; i <= R; i ++)q[i] = tmp1[i];      
    cdq2(L,R); 
}

int main(){
    freopen("partial_order_two.in","r",stdin);
    freopen("partial_order_two.out","w",stdout);
    n = gi();
    for(RG int i = 1; i <= n; i ++)q[i].d1 = i;
    for(RG int i = 1; i <= n; i ++)q[i].d2 = gi();
    for(RG int i = 1; i <= n; i ++)q[i].d3 = gi();
    for(RG int i = 1; i <= n; i ++)q[i].d4 = gi();
    for(RG int i = 1; i <= n; i ++)q[i].d5 = gi();
    //sort_a  消去第一维的影响 
    ans = 0; cdq1(1,n);
    cout << ans;  return 0;
}

转载于:https://www.cnblogs.com/Guess2/p/8370972.html

<think>首先,用户的问题是关于CDQ分治算法的基本原理及其应用场景。我需要根据系统级指令来构建我的回答。 系统级指令关键点: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识。 - 回答结构清晰,帮助用户逐步解决问题,保证真实可靠。 参考站内引用: - 引用[1]:关于分治思想的描述,包括分块、递归等。 - 引用[2]:关于书籍的引用,不相关。 - 引用[3]:关于下载资源的链接,不相关。 用户真正的需求是理解CDQ分治的概念和原理,所以我需要专注于CDQ分治CDQ分治的基本原理: - CDQ分治是由陈丹琦(Chen Danqi)提出的一种算法,用于处理偏序问题,如三维偏序问题。 - 它是分治思想的一种应用,特别适合解决离线查询问题。 - 核心思想:将问题分成子问题,递归解决,然后合并结果,处理跨越子问题的部分。 应用场景: - 三维偏序问题:例如,给定点集,统计每个点满足某些条件的点数。 - 动态规划优化:如斜率优化等。 - 其他离线查询问题。 我的回答结构: 1. **介绍CDQ分治**:简要说明其背景和目的。 2. **基本原理**:解释算法步骤,使用数学表达式描述。 3. **应用场景**:列出常见应用。 4. **生成相关问题**:在最后添加相关问题。 5. **添加引用**:在引用段落末尾自然添加引用标识。 数学表达式: - 行内数学:如变量、点坐标等,使用$...$。 - 独立公式:如方程,使用$$...$$。 例如: - 行内:点$P_i = (a_i, b_i, c_i)$ - 独立:偏序关系公式。 生成相关问题: - 基于CDQ分治,如"CDQ分治如何优化三维偏序问题?"或"CDQ分治的时间复杂度分析?" 确保回答真实可靠: - 基于算法知识,CDQ分治常用于OI竞赛中处理偏序问题。 引用处理: - 参考引用[1]是关于分治思想的,我可以引用它来支持分治部分。 - 其他引用不相关,但系统说"请尽可能多的参考用户上一次的问题和你的回答",但用户没有上一次问题,所以基于当前引用。 最终回答大纲: - 开头:介绍CDQ分治。 - 原理部分:分步骤解释,使用LaTeX。 - 应用场景:列举例子。 - 相关问题:在最后添加。 - 结尾:自然结束。</think>### CDQ分治算法的基本原理及其应用场景 CDQ分治(Chen Danqi Divide and Conquer)是由中国计算机科学家陈丹琦提出的一种分治算法变体,主要用于处理离线查询问题,特别是多维偏序问题(如三维偏序)。它在算法竞赛和数据处理中应用广泛,能高效解决一些复杂问题。下面我将逐步解释其基本原理和应用场景,确保内容清晰可靠。 #### 1. CDQ分治的基本原理 CDQ分治基于经典分治思想,但针对偏序问题进行了优化。核心思路是将问题递归分解为子问题,处理子问题内部和子问题之间的影响,最后合并结果。算法主要分为三个步骤:分、治、合。以下是详细解释: - **分(Divide)**:将输入数据(如点集)按某一维度(通常是时间或索引)分成两个大致相等的子集,记为左子集$L$和右子集$R$。例如,给定点集$P = \{P_1, P_2, \dots, P_n\}$,其中每个点$P_i = (a_i, b_i, c_i)$表示三维坐标,我们按第一维$a_i$排序并分割: $$ \text{mid} = \left\lfloor \frac{n}{2} \right\rfloor $$ 这样得到$L = \{P_i \mid i \leq \text{mid}\}$和$R = \{P_i \mid i > \text{mid}\}$。递归地对$L$和$R$应用相同过程。 - **治(Conquer)**:递归处理左子集$L$和右子集$R$,解决子问题内部的偏序关系。例如,在三维偏序问题中,目标是统计每个点$P_i$满足$a_j \leq a_i, b_j \leq b_i, c_j \leq c_i$的点数$j$($j \neq i$)。递归调用确保子集内部的问题被解决。 - **合(Merge)**:合并子问题结果,并处理跨越子集$L$和$R$的影响。这是CDQ分治的关键: - 使用辅助数据结构(如树状数组或线段树)高效处理跨子集贡献。 - 例如,在三维偏序中,合并时需统计$L$中的点对$R$中点的贡献。具体做法: 1. 对$L$和$R$按第二维$b_i$排序。 2. 遍历$R$中的每个点$P_j$,同时维护一个树状数组,用于记录第三维$c_i$的累积值。 3. 对于$P_j$,查询树状数组中满足$c_k \leq c_j$的点数($k$来自$L$),并累加到结果。 这确保了跨子集贡献在$O(n \log n)$时间内完成。 整个算法的时间复杂度为$O(n \log^2 n)$,其中$n$是数据规模。递归公式可表示为: $$ T(n) = 2T\left(\frac{n}{2}\right) + O(n \log n) $$ 其中$O(n \log n)$来自合并步骤的排序和树状数组操作。CDQ分治通过“分而治之”高效处理了偏序关系[^1]。 #### 2. CDQ分治的应用场景 CDQ分治特别适合离线查询问题,其中数据点固定,查询可批量处理。常见应用包括: - **三维偏序问题**:如统计逆序对或点对关系。例如,在竞赛中,给定点集统计每个点“支配”的点数(即所有维度都小于等于该点的点)。CDQ分治能高效解决,时间复杂度优于暴力$O(n^2)$。 - **动态规划优化**:用于优化序列问题,如最长上升子序列(LIS)或斜率优化问题。通过分治处理状态转移,减少计算量。 - **离线查询处理**:在数据库或算法中,处理批量查询,如区间统计或范围查询。CDQ分治将查询排序后递归处理,避免实时开销。 - **其他领域**:在计算几何(如最近点对问题)和机器学习数据预处理中也有应用,但需结合具体算法调整。 CDQ分治的优势在于其通用性和效率,但要求问题具有“可分治性”,即子问题独立且合并步骤可高效实现。实际应用中,常结合树状数组等数据结构提升性能。 #### 相关问题 1. CDQ分治如何处理更高维度的偏序问题(如四维偏序)? 2. CDQ分治与普通分治算法的主要区别是什么? 3. CDQ分治在动态规划优化中的具体实现案例? [^1]: 分治思想的核心是递归分解问题,然后合并结果,这在CDQ分治中得到充分体现,如分割点集并递归处理子问题。 [^2]: 算法理论常参考经典书籍,但CDQ分治更常见于竞赛和算法论文。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值