http://poj.org/problem?id=2955
题意:
给定一个只包含'(' , ')' , '[', ']'的字符串,求满足括号匹配的最长子串。
思路:
区间DP,只要找到满足()或者 [] 匹配的, dp[i][j] = dp[i +1][j - 1] + 2;然后再枚举i到j之间一点求最大值。
记忆化搜索:
//#pragma comment(linker,"/STACK:327680000,327680000")
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#include <string>
#include <set>
#include <functional>
#include <numeric>
#include <sstream>
#include <stack>
#include <map>
#include <queue>
#define CL(arr, val) memset(arr, val, sizeof(arr))
#define ll long long
#define inf 0x7f7f7f7f
#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0)
#define ll long long
#define L(x) (x) << 1
#define R(x) (x) << 1 | 1
#define MID(l, r) (l + r) >> 1
#define Min(x, y) (x) < (y) ? (x) : (y)
#define Max(x, y) (x) < (y) ? (y) : (x)
#define E(x) (1 << (x))
#define iabs(x) (x) < 0 ? -(x) : (x)
#define OUT(x) printf("%I64d\n", x)
#define lowbit(x) (x)&(-x)
#define Read() freopen("din.txt", "r", stdin)
#define Write() freopen("dout.txt", "w", stdout);
#define N 1007
using namespace std;
int dp[N][N];
bool vt[N][N];
char str[N];
int n;
int DP(int s,int e)
{
if (s == e) return 0;
if (vt[s][e]) return dp[s][e];
if ((str[s] == '(' && str[e] == ')') || (str[s] == '[' && str[e] == ']'))
dp[s][e] = DP(s + 1,e - 1) + 2;
for (int t = s + 1; t < e; ++t)
{
dp[s][e] = max(dp[s][e],DP(s,t) + DP(t,e));
}
vt[s][e] = true;
return dp[s][e];
}
int main()
{
//Read();
while (~scanf("%s",str))
{
if (str[0] == 'e') break;
CL(dp,0); CL(vt,false);
n = strlen(str);
int ans = DP(0,n - 1);
printf("%d\n",ans);
}
return 0;
}
DP:
//#pragma comment(linker,"/STACK:327680000,327680000")
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#include <string>
#include <set>
#include <functional>
#include <numeric>
#include <sstream>
#include <stack>
#include <map>
#include <queue>
#define CL(arr, val) memset(arr, val, sizeof(arr))
#define ll long long
#define inf 0x7f7f7f7f
#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0)
#define ll long long
#define L(x) (x) << 1
#define R(x) (x) << 1 | 1
#define MID(l, r) (l + r) >> 1
#define Min(x, y) (x) < (y) ? (x) : (y)
#define Max(x, y) (x) < (y) ? (y) : (x)
#define E(x) (1 << (x))
#define iabs(x) (x) < 0 ? -(x) : (x)
#define OUT(x) printf("%I64d\n", x)
#define lowbit(x) (x)&(-x)
#define Read() freopen("din.txt", "r", stdin)
#define Write() freopen("dout.txt", "w", stdout);
#define N 1007
using namespace std;
int dp[N][N];
char str[N];
int n;
int main()
{
int i,j,len,t;
while (~scanf("%s",str))
{
if (str[0] == 'e') break;
n = strlen(str);
CL(dp,0);
for (len = 1; len < n; ++len)
{
for (i = 0; i < n - len; ++i)
{
//printf(">>%d %d\n",i,i + len);
if ((str[i] == '(' && str[i + len] == ')') || (str[i] == '[' && str[i + len] == ']'))
dp[i][i + len] = dp[i + 1][i + len - 1] + 2;
for (t = i + 1; t < i + len; ++t)
{
dp[i][i + len] = max(dp[i][i + len],dp[i][t] + dp[t][i + len]);
}
}
}
printf("%d\n",dp[0][n - 1]);
}
return 0;
}