dp--最大区间和变形-cf-1155D

本文详细解析了Codeforces题目1155D.Beautiful Array的解题思路,该题要求在给定整数数组中找到最大连续子数组和,允许乘以特定值优化数组美度。文章提供了状态转移方程及C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

dp--最大区间和变形-cf-1155D

D. Beautiful Array

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an array aa consisting of nn integers. Beauty of array is the maximum sum of some consecutive subarray of this array (this subarray may be empty). For example, the beauty of the array [10, -5, 10, -4, 1] is 15, and the beauty of the array [-3, -5, -1] is 0.

You may choose at most one consecutive subarray of aa and multiply all values contained in this subarray by xx. You want to maximize the beauty of array after applying at most one such operation.

Input

The first line contains two integers nn and xx (1≤n≤3⋅105,−100≤x≤1001≤n≤3⋅105,−100≤x≤100) — the length of array aa and the integer xxrespectively.

The second line contains nn integers a1,a2,…,ana1,a2,…,an (−109≤ai≤109−109≤ai≤109) — the array aa.

Output

Print one integer — the maximum possible beauty of array aa after multiplying all values belonging to some consecutive subarray xx.

Examples

input

Copy

5 -2
-3 8 -2 1 -6

output

Copy

22

input

Copy

12 -3
1 3 3 7 1 3 3 7 1 3 3 7

output

Copy

42

input

Copy

5 10
-1 -2 -3 -4 -5

output

Copy

0

Note

In the first test case we need to multiply the subarray [-2, 1, -6], and the array becomes [-3, 8, 4, -2, 12] with beauty 22 ([-3, 8, 4, -2, 12]).

In the second test case we don't need to multiply any subarray at all.

In the third test case no matter which subarray we multiply, the beauty of array will be equal to 0.

状态转移方程如下

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <sstream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <iomanip>
#include <stack>
#include <climits>
#include <fstream>

using namespace std;

typedef long long LL;
const int INF = 0x3f3f3f3f;
const int N = 300005;
const int MOD = 1e9 + 7;

#define F(i, l, r) for(int i = l;i <= (r);++i)
#define RF(i, l, r) for(int i = l;i >= (r);--i)

int main()
{
    LL n, m, t, ans = 0, p = 0, sum1 = 0, sum2 = 0;
    cin >> n >> m;
    F(i, 1, n)
    {
        cin >> t;
        sum1 = max(sum1 + t, 0ll);//d[i][0] = max(0ll,d[i-1][0]+a[i]);
        sum2 = max(sum2 + m * t, sum1);//d[i][1] = max( 0ll, max(d[i-1][0],d[i-1][1])+a[i]*x);
        p = max(p + t, sum2);// d[i][2] = max( 0ll, max(d[i-1][0],  max(d[i-1][1],d[i-1][2]) )+ a[i]);
        ans = max(ans, p);
    }
    cout << ans << endl;
    return 0;
}

转载于:https://www.cnblogs.com/shuizhidao/p/10776344.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值