【BZOJ3774】最优选择 最小割

本文解析了一道名为“最优选择”的算法题目,通过建立最大流模型来解决该问题。介绍了如何利用黑白染色法,对点进行集合划分,并详细解释了三种不同的情况及其对应的建图方法。

【BZOJ3774】最优选择

Description

小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择了的。一个点如果被选择了,那么可以得到Bij的回报,现在请你帮小N选一个最优的方案,使得回报-代价尽可能大。

Input

第一行两个正整数N,M表示方格图的长与宽。

接下来N行每行M个整数Aij表示控制的代价。

接下来N行每行M个整数Bij表示选择的回报。

Output

一个整数,表示最大的回报-代价(如果一个都不控制那么就是0)。

Sample Input

3 3
1 100 100
100 1 100
1 100 100
2 0 0
5 2 0
2 0 0

Sample Output

8

HINT

对于100%的数据,N,M<=50,Aij,Bij都是小于等于100的正整数。

题解:忠告:不要看大爷的图!大爷说的挺明白,然后自己想了一个差不多的建图方法,一看大爷的图:这啥玩应?我和大爷建的不一样啊!一定是我错了!然后试图理解大爷的建图方法,得出结论:大爷太神了,这方法我理解不了。

还是来一个不那么神的,又好想又好理解的做法吧!

黑白染色是显然的啦,对于白点,我们钦定划分到T集代表选,然后讨论所有的情况:

1.四周选,当前点不选。划分到S集,代价0。

因为四周的点是黑点,划分到S集代表不选,而将当前点直接连向四周的点即可保证当前点与T集割开,所以连从当前点到四周的点,容量inf的边。

2.四周不选,当前点选。划分到T集,代价A。

我们需要让当前点花费A的代价即可以与S集割开,所以连从S到当前点,容量为A的边即可。

3.四周不选,当前点不选。划分到S集,代价B。

我们需要让当前点花费B的代价即可以与T割开,这个条件和情况1属于【或】关系,所以我们新建点b,设原来的是点a,将1中的边改为从b到四周的点,然后连从a到b,容量为B的边即可。

最终的图其实长这样:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
#define P(X,Y) ((X-1)*m+Y)
#define inf 1<<30
using namespace std;
int n,m,S,T,ans,cnt;
int A[60][60],B[60][60];
int to[100010],next[100010],head[100010],val[100010],d[10010];
int dx[]={0,1,0,-1},dy[]={1,0,-1,0};
queue<int> q;
inline void add(int a,int b,int c)
{
	to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
	to[cnt]=a,val[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
inline int rd()
{
	int ret=0,f=1;	char gc=getchar();
	while(gc<'0'||gc>'9')	{if(gc=='-')	f=-f;	gc=getchar();}
	while(gc>='0'&&gc<='9')	ret=ret*10+gc-'0',gc=getchar();
	return ret*f;
}
inline int dfs(int x,int mf)
{
	if(x==T)	return mf;
	int i,temp=mf,k;
	for(i=head[x];i!=-1;i=next[i])	if(val[i]&&d[to[i]]==d[x]+1)
	{
		k=dfs(to[i],min(temp,val[i]));
		if(!k)	d[to[i]]=0;
		temp-=k,val[i]-=k,val[i^1]+=k;
		if(!temp)	break;
	}
	return mf-temp;
}
inline int bfs()
{
	memset(d,0,sizeof(d));
	while(!q.empty())	q.pop();
	d[S]=1,q.push(S);
	int i,u;
	while(!q.empty())
	{
		u=q.front(),q.pop();
		for(i=head[u];i!=-1;i=next[i])	if(val[i]&&!d[to[i]])
		{
			d[to[i]]=d[u]+1;
			if(to[i]==T)	return 1;
			q.push(to[i]);
		}
	}
	return 0;
}
int main()
{
	n=rd(),m=rd(),S=0,T=2*n*m+1;
	int i,j,k,a,b,c;
	memset(head,-1,sizeof(head));
	for(i=1;i<=n;i++)	for(j=1;j<=m;j++)	A[i][j]=rd();
	for(i=1;i<=n;i++)	for(j=1;j<=m;j++)	B[i][j]=rd(),ans+=B[i][j];
	for(i=1;i<=n;i++)	for(j=1;j<=m;j++)
	{
		if((i^j)&1)
		{
			a=P(i,j),b=P(i,j)+n*m;
			add(S,a,A[i][j]),add(a,b,B[i][j]);
			for(k=0;k<4;k++)	if(i+dx[k]&&i+dx[k]<=n&&j+dy[k]&&j+dy[k]<=m)
			{
				c=P(i+dx[k],j+dy[k]),add(b,c,inf);
			}
		}
		else
		{
			a=P(i,j),b=P(i,j)+n*m;
			add(a,T,A[i][j]),add(b,a,B[i][j]);
			for(k=0;k<4;k++)	if(i+dx[k]&&i+dx[k]<=n&&j+dy[k]&&j+dy[k]<=m)
			{
				c=P(i+dx[k],j+dy[k]),add(c,b,inf);
			}
		}
	}
	while(bfs())	ans-=dfs(0,inf);
	printf("%d",ans);
	return 0;
}

转载于:https://www.cnblogs.com/CQzhangyu/p/8469613.html

(1)普通用户端(全平台) 音乐播放核心体验: 个性化首页:基于 “听歌历史 + 收藏偏好” 展示 “推荐歌单(每日 30 首)、新歌速递、相似曲风推荐”,支持按 “场景(通勤 / 学习 / 运动)” 切换推荐维度。 播放页功能:支持 “无损音质切换、倍速播放(0.5x-2.0x)、定时关闭、歌词逐句滚动”,提供 “沉浸式全屏模式”(隐藏冗余控件,突出歌词与专辑封面)。 多端同步:自动同步 “播放进度、收藏列表、歌单” 至所有登录设备(如手机暂停后,电脑端打开可继续播放)。 音乐发现与管理: 智能搜索:支持 “歌曲名 / 歌手 / 歌词片段” 搜索,提供 “模糊匹配(如输入‘晴天’联想‘周杰伦 - 晴天’)、热门搜索词推荐”,结果按 “热度 / 匹配度” 排序。 歌单管理:创建 “公开 / 私有 / 加密” 歌单,支持 “批量添加歌曲、拖拽排序、一键分享到社交平台”,系统自动生成 “歌单封面(基于歌曲风格配色)”。 音乐分类浏览:按 “曲风(流行 / 摇滚 / 古典)、语言(国语 / 英语 / 日语)、年代(80 后经典 / 2023 新歌)” 分层浏览,每个分类页展示 “TOP50 榜单”。 社交互动功能: 动态广场:查看 “关注的用户 / 音乐人发布的动态(如‘分享新歌感受’)、好友正在听的歌曲”,支持 “赞 / 评论 / 转发”,可直接击动态中的歌曲播放。 听歌排行:个人页展示 “本周听歌 TOP10、累计听歌时长”,平台定期生成 “全球 / 好友榜”(如 “好友中你本周听歌时长排名第 3”)。 音乐圈:加入 “特定曲风圈子(如‘古典音乐爱好者’)”,参与 “话题讨论(如‘你心中最经典的钢琴曲’)、线上歌单共创”。 (2)音乐人端(创作者中心) 作品管理: 音乐上传:支持 “无损音频(FLAC/WAV)+ 歌词文件(LRC)+ 专辑封面” 上传,填写 “歌曲信息
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值