这里用到一个结论:最小生成树里替换一定数量的边,那么新的最小生成树里剩余的边,一定在初始的最小生成树里面,先生成最小生成树,存一下边,然后枚举方案生成新的最小生成树就行了
#include <iostream> #include <cstring> #include <algorithm> #include <cstdio> #include <vector> using namespace std; const int maxn=1000+100; const int inf=0x3f3f3f3f; int c[maxn]; vector<int> ss[maxn]; int cost[maxn]; int x[maxn]; int y[maxn]; int found(int x) { if(x==c[x]) return x; else return c[x]=found(c[x]); } void unit(int x,int y) { x=found(x); y=found(y); if(x==y) return; c[x]=y; } bool same(int x,int y) { return found(x)==found(y); } struct note { int u,v; int w; bool operator <(const note &p) const { return w<p.w; } }; note aa[maxn*maxn/2],bb[maxn]; int dist(int x1,int y1,int x2,int y2) { return (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2); } void init(int n) { for(int i=0; i<=n; i++) { c[i]=i; ss[i].clear(); } } int n,m; int t; int main() { scanf("%d",&t); while(t--) { scanf("%d%d",&n,&m); init(n); int nn,cc; for(int i=1; i<=m; i++) { scanf("%d",&nn); scanf("%d",&cost[i]); for(int j=1; j<=nn; j++) { scanf("%d",&cc); ss[i].push_back(cc); } } for(int i=1; i<=n; i++) scanf("%d%d",&x[i],&y[i]); int cnt=0; for(int i=1; i<=n; i++) for(int j=i+1; j<=n; j++) { cnt++; aa[cnt].w=dist(x[i],y[i],x[j],y[j]); aa[cnt].u=i; aa[cnt].v=j; } sort(aa+1,aa+1+cnt); int num=0; for(int i=1;i<=cnt;i++) { if(!same(aa[i].u,aa[i].v)) { unit(aa[i].u,aa[i].v); num++; bb[num]=aa[i];//最小生成树所构成的边集 } if(num==n-1) break; } int ans=inf; for(int i=0;i<(1<<m);i++)//位运算枚举子集 { int sum=0; int lng=0;//生成树里边的数量 int flag=0; for(int k=1;k<=n;k++) c[k]=k; for(int j=0;j<n;j++) { if(i&(1<<j)) { sum+=cost[j+1]; for(int k=1;k<ss[j+1].size();k++) { if(!same(ss[j+1][k-1],ss[j+1][k])) { unit(ss[j+1][k-1],ss[j+1][k]); lng++; } } } } if(lng<n-1) { for(int j=1;j<=num;j++) { if(!same(bb[j].u,bb[j].v)) { unit(bb[j].u,bb[j].v); sum+=bb[j].w; lng++; } if(lng==n-1)//跳出,防止超时 { flag=1; break; } } } else flag=1; if(flag) ans=min(ans,sum); } printf("%d\n",ans); if(t) printf("\n"); } return 0; }