斐波那契数列解决上台阶的问题

本文详细介绍了斐波那契数列的概念及其数学定义,并提供了两种实现方式:递归和迭代。此外还探讨了斐波那契数列的一个变形应用问题——爬楼梯问题,并给出了相应的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

斐波那契数列(Fibonacci sequence)因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用。

数列的特征:第1项是0,第2项是第一个1,从第3项开始,每一项都等于前两项之和。

1、基本的斐波那契数列

function getNthFibonacci(count) {
    if(count==0||count==1) return 1;
    return getNthFibonacci(count-2)+getNthFibonacci(count-1);
}    //递归实现,但是当count值特别大的时候不建议使用递归

  迭代实现的代码如下:

function getNthFibonacci(count) {
    if(count<0) return 0;
    if(count<=1) return 1;
    var first = 1;
    var second = 1;
    var third = 0;
    for(var i = 2; i <= count; i++) {
        third = first + second;
        first = second;
        second = third;
    }
    return third;
}

  补:这里解释一下递归和迭代的区别,在知乎上找到的一种解释,很清晰明确。

2、斐波那契数列变形应用——题目描述:

有一楼梯共n级,刚开始时你在第一级,若每次只能跨上一级或二级,要走上第n级,共有多少走法?

注:规定从一级到一级有0种走法。

function taijie(n){

        var arr=[];
        arr[0]=0;
        arr[1]=0;
        arr[2]=1;
        arr[3]=2;
        for(var i=4;i<=n;i++)
        {
            arr[i] =arr[i-1]+arr[i-2];
        }
        return arr[n];
    }

  

 

转载于:https://www.cnblogs.com/olive987/p/5873262.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值