最小生成树:
一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。简单来说就是有且仅有n个点n-1条边的连通图。
而最小生成树就是最小权重生成树的简称,即所有边的权值之和最小的生成树。
最小生成树问题一般有以下两种求解方式。
一、Prim算法
参考了Feynman的博客
Prim算法通常以邻接矩阵作为储存结构。
算法思路:以顶点为主导地位,从起始顶点出发,通过选择当前可用的最小权值边把顶点加入到生成树当中来:
1.从连通网络N={V,E}中的某一顶点U0出发,选择与它关联的具有最小权值的边(U0,V),将其顶点加入到生成树的顶点集合U中。
2.以后每一步从一个顶点在U中,而另一个顶点不在U中的各条边中选择权值最小的边(U,V),把它的顶点加入到集合U中。如此继续下去,直到网络中的所有顶点都加入到生成树顶点集合U中为止。
模板题链接:Prim算法求最小生成树
朴素版时间复杂度O(n²)算法模板:
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> using namespace std; const int N = 500+10; int n,m; int g[N][N],dis[N],vis[N]; void prim() { memset(dis,0x1f,sizeof dis); dis[1]=0; for(int j=1;j<=n;j++) { int min_len=2e+9,k;

本文介绍了最小生成树的概念及其重要性,详细讲解了Prim算法和Kruskal算法的原理、步骤及代码实现,并对比了两者在稠密图和稀疏图中的时间复杂度表现。Prim算法从顶点出发逐步构建生成树,Kruskal算法则以边为中心,按权值从小到大合并连通分量。在实际应用中,Prim算法在稠密图中更优,Kruskal在稀疏图中更优。
最低0.47元/天 解锁文章
1299

被折叠的 条评论
为什么被折叠?



