洛谷P3870 [TJOI2009]开关

本文介绍了一种使用线段树解决区间异或操作问题的方法,具体为在一排初始关闭的灯中进行区间内灯状态的切换及查询开启灯的数量。通过线段树的懒惰传播和区间更新特性,实现高效的操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

现有\(N(2 ≤ N ≤ 100000)\)盏灯排成一排,从左到右依次编号为:\(1,2,......,N\)。然后依次执行\(M(1 ≤ M ≤ 100000)\)项操作,操作分为两种:第一种操作指定一个区间\([a, b]\),然后改变编号在这个区间内的灯的状态(把开着的灯关上,关着的灯打开),第二种操作是指定一个区间\([a, b]\),要求你输出这个区间内有多少盏灯是打开的。灯在初始时都是关着的。

输入输出格式

输入格式:

第一行有两个整数\(N\)\(M\),分别表示灯的数目和操作的数目。接下来有\(M\)行,每行有三个整数,依次为:\(c, a, b\)。其中\(c\)表示操作的种类,当\(c\)的值为\(0\)时,表示是第一种操作。当\(c\)的值为\(1\)时表示是第二种操作。\(a\)\(b\)则分别表示了操作区间的左右边界\((1 ≤ a ≤ b ≤ N)\)

输出格式:

每当遇到第二种操作时,输出一行,包含一个整数:此时在查询的区间中打开的灯的数目。

输入输出样例

输入样例#1:

4 5
0 1 2
0 2 4
1 2 3
0 2 4
1 1 4

输出样例#1:

1
2

思路:还是一道线段树区间异或,思路跟之前做的洛谷P2574和洛谷P2846完全一样。

代码:

#include<cstdio>
#include<cctype>
#define maxn 100007
#define ls rt<<1
#define rs rt<<1|1
using namespace std;
int n,m,sum[maxn<<2],lazy[maxn<<2];
inline int qread() {
  char c=getchar();int num=0,f=1;
  for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
  for(;isdigit(c);c=getchar()) num=num*10+c-'0';
  return num*f;
}
inline void pushup(int rt) {
  sum[rt]=sum[ls]+sum[rs];
}
inline void pushdown(int rt, int len) {
  if(lazy[rt]) {
    lazy[ls]^=1;
    lazy[rs]^=1;
    sum[ls]=(len-(len>>1))-sum[ls];
    sum[rs]=(len>>1)-sum[rs];
    lazy[rt]=0;
  }
}
void modify(int rt, int l, int r, int L, int R) {
  if(L>r||R<l) return;
  if(L<=l&&r<=R) {
    lazy[rt]^=1;
    sum[rt]=r-l+1-sum[rt];
    return;
  }
  pushdown(rt,r-l+1);
  int mid=(l+r)>>1;
  modify(ls,l,mid,L,R),modify(rs,mid+1,r,L,R);
  pushup(rt);
}
int csum(int rt, int l, int r, int L, int R) {
  if(L>r||R<l) return 0;
  if(L<=l&&r<=R) return sum[rt];
  pushdown(rt,r-l+1);
  int mid=(l+r)>>1;
  return csum(ls,l,mid,L,R)+csum(rs,mid+1,r,L,R);
}
int main() {
  n=qread(),m=qread();
  for(int i=1,k,l,r;i<=m;++i) {
    k=qread(),l=qread(),r=qread();
    if(!k) modify(1,1,n,l,r);
    else printf("%d\n",csum(1,1,n,l,r));
  }
  return 0;
}

转载于:https://www.cnblogs.com/grcyh/p/10182255.html

资源下载链接为: https://pan.quark.cn/s/d37d4dbee12c A:计算机视觉,作为人工智能领域的关键分支,致力于赋予计算机系统 “看懂” 世界的能力,从图像、视频等视觉数据中提取有用信息并据此决策。 其发展历程颇为漫长。早期图像处理技术为其奠基,后续逐步探索三维信息提取,与人工智能结合,又经历数学理论深化、机器学习兴起,直至当下深度学习引领浪潮。如今,图像生成和合成技术不断发展,让计算机视觉更深入人们的日常生活。 计算机视觉综合了图像处理、机器学习、模式识别和深度学习等技术。深度学习兴起后,卷积神经网络成为核心工具,能自动提炼复杂图像特征。它的工作流程,首先是图像获取,用相机等设备捕获视觉信息并数字化;接着进行预处理,通过滤波、去噪等操作提升图像质量;然后进入关键的特征提取和描述环节,提炼图像关键信息;之后利用这些信息训练模型,学习视觉模式和规律;最终用于模式识别、分类、对象检测等实际应用。 在实际应用中,计算机视觉用途极为广泛。在安防领域,能进行人脸识别、目标跟踪,保障公共安全;在自动驾驶领域,帮助车辆识别道路、行人、交通标志,实现安全行驶;在医疗领域,辅助医生分析医学影像,进行疾病诊断;在工业领域,用于产品质量检测、机器人操作引导等。 不过,计算机视觉发展也面临挑战。比如图像生成技术带来深度伪造风险,虚假图像和视频可能误导大众、扰乱秩序。为此,各界积极研究检测技术,以应对这一问题。随着技术持续进步,计算机视觉有望在更多领域发挥更大作用,进一步改变人们的生活和工作方式 。
### 解题思路 洛谷 P4160 [SCOI2009] 生日快乐 这道题的核心在于递归与分治策略。题目要求将一个矩形蛋糕切成若干块,使得每一块的长宽比的最大值最小。由于每一块的长宽比是独立的,因此可以通过递归的方法,将问题分解为子问题来求解。 #### 核心思路: 1. **递归切分**:每次将蛋糕分成两部分,并递归地对这两部分进行同样的操作,直到只剩一块为止。 2. **枚举切分方式**:对于每一层递归,需要枚举所有可能的切分方式(横向或纵向),以及每一块的大小比例。 3. **取最大值与最小值**:每一步递归中,选择切分方式使得两部分的最大长宽比尽可能小。 #### 关键点: - **长宽比处理**:为了保证长宽比的计算准确,需要确保长边在分子,短边在分母。 - **切分方式枚举**:枚举所有可能的切分比例,确保没有遗漏。 - **递归终止条件**:当只剩一块时,直接返回当前长宽比。 ### 代码示例 以下是一个完整的代码实现,展示了如何通过递归方法解决这个问题: ```cpp #include <iostream> #include <cstdio> #include <algorithm> using namespace std; int x, y, n; // 计算最大公约数 int gcd(int x, int y) { if (y == 0) return x; return gcd(y, x % y); } // 递归函数,用于计算最小的长宽比 double qie(int x, int y, int n) { if (x < y) swap(x, y); // 保证x是较长边 int g = gcd(x, y); if (g != 1) { x /= g; y /= g; } if (n == 1) return static_cast<double>(x) / y; // 终止条件 double ans = 10000000; for (int i = 1; i < n; ++i) { // 横向切分 ans = min(ans, max(qie(x * i, y * n, i), qie(x * (n - i), y * n, n - i))); // 纵向切分 ans = min(ans, max(qie(x * n, y * i, i), qie(x * n, y * (n - i), n - i))); } return ans; } int main() { scanf("%d%d%d", &x, &y, &n); printf("%.6lf\n", qie(x, y, n)); return 0; } ``` ### 代码解析 1. **gcd函数**:用于化简长宽比,避免浮点数计算误差。 2. **qie函数**: - 首先交换长宽,确保长边在前。 - 化简长宽比的分数,避免重复计算。 - 递归终止条件:当只剩一块时,返回长宽比。 - 枚举所有可能的切分方式,取最小的长宽比。 3. **main函数**:读取输入并调用递归函数,输出结果。 ### 复杂度分析 - **时间复杂度**:由于每次递归会枚举所有可能的切分方式,时间复杂度为指数级,但由于数据范围较小,可以通过递归直接解决。 - **空间复杂度**:递归深度由切分次数决定,空间复杂度较低。 ### 总结 这道题通过递归的方式,将大问题分解为子问题,结合枚举所有可能的切分方式,最终找到最优解。递归与分治策略是解决此类问题的核心思想。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值