安卓自定义控件

分为三种:

  1. 继承已有控件:重写onDraw()
  2. 组合已有控件:继承ViewGroup,通常是某一种Layout
  3. 自定义新控件:继承View或者SurfaceView,重写onMeasure,OnDraw

介绍一下onMeasure里面的一个参数MeasureSpec

源码:

/**
 * MeasureSpec封装了父布局传递给子布局的布局要求,每个MeasureSpec代表了一组宽度和高度的要求
 * MeasureSpec由size和mode组成。
 * 三种Mode:
 * 1.UNSPECIFIED
 * 父不没有对子施加任何约束,子可以是任意大小(也就是未指定)
 * (UNSPECIFIED在源码中的处理和EXACTLY一样。当View的宽高值设置为0的时候或者没有设置宽高时,模式为UNSPECIFIED
 * 2.EXACTLY
 * 父决定子的确切大小,子被限定在给定的边界里,忽略本身想要的大小。
 * (当设置width或height为match_parent时,模式为EXACTLY,因为子view会占据剩余容器的空间,所以它大小是确定的)
 * 3.AT_MOST
 * 子最大可以达到的指定大小
 * (当设置为wrap_content时,模式为AT_MOST, 表示子view的大小最多是多少,这样子view会根据这个上限来设置自己的尺寸)
 * 
 * MeasureSpecs使用了二进制去减少对象的分配。
 */
public class MeasureSpec {
        // 进位大小为2的30次方(int的大小为32位,所以进位30位就是要使用int的最高位和倒数第二位也就是32和31位做标志位)
        private static final int MODE_SHIFT = 30;
        
        // 运算遮罩,0x3为16进制,10进制为3,二进制为11。3向左进位30,就是11 00000000000(11后跟30个0)
        // (遮罩的作用是用1标注需要的值,0标注不要的值。因为1与任何数做与运算都得任何数,0与任何数做与运算都得0)
        private static final int MODE_MASK  = 0x3 << MODE_SHIFT;

        // 0向左进位30,就是00 00000000000(00后跟30个0)
        public static final int UNSPECIFIED = 0 << MODE_SHIFT;
        // 1向左进位30,就是01 00000000000(01后跟30个0)
        public static final int EXACTLY     = 1 << MODE_SHIFT;
        // 2向左进位30,就是10 00000000000(10后跟30个0)
        public static final int AT_MOST     = 2 << MODE_SHIFT;

        /**
         * 根据提供的size和mode得到一个详细的测量结果
         */
        // measureSpec = size + mode;    (注意:二进制的加法,不是10进制的加法!)
        // 这里设计的目的就是使用一个32位的二进制数,32和31位代表了mode的值,后30位代表size的值
        // 例如size=100(4),mode=AT_MOST,则measureSpec=100+10000...00=10000..00100
        public static int makeMeasureSpec(int size, int mode) {
            return size + mode;
        }

        /**
         * 通过详细测量结果获得mode
         */
        // mode = measureSpec & MODE_MASK;
        // MODE_MASK = 11 00000000000(11后跟30个0),原理是用MODE_MASK后30位的0替换掉measureSpec后30位中的1,再保留32和31位的mode值。
        // 例如10 00..00100 & 11 00..00(11后跟30个0) = 10 00..00(AT_MOST),这样就得到了mode的值
        public static int getMode(int measureSpec) {
            return (measureSpec & MODE_MASK);
        }

        /**
         * 通过详细测量结果获得size
         */
        // size = measureSpec & ~MODE_MASK;
        // 原理同上,不过这次是将MODE_MASK取反,也就是变成了00 111111(00后跟30个1),将32,31替换成0也就是去掉mode,保留后30位的size
        public static int getSize(int measureSpec) {
            return (measureSpec & ~MODE_MASK);
        }

        /**
         * 重写的toString方法,打印mode和size的信息,这里省略
         */
        public static String toString(int measureSpec) {
            return null;
        }
}

典型的视图度量实现:

@Override
    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        measuredHeight = measureHeight(heightMeasureSpec);
        measuredWidth = measureWidth(widthMeasureSpec);
        setMeasuredDimension(measuredWidth, measuredHeight);
    }

    private int measureWidth(int widthMeasureSpec) {
        int specMode = MeasureSpec.getMode(widthMeasureSpec);
        int specSize = MeasureSpec.getSize(widthMeasureSpec);
        
        //如果不指定限制,就是默认大小
        int result = 50;
        if(specMode == MeasureSpec.AT_MOST){
            //如果父组件被控件填充,则返回外边界大小
            result = specSize;
        }else if(specMode == MeasureSpec.EXACTLY){
            //如果指定空间大小,返回控件实际大小
            result = specSize;
        }
        return result;
    }

    private int measureHeight(int heightMeasureSpec) {
        // TODO Auto-generated method stub
        int specMode = MeasureSpec.getMode(heightMeasureSpec);
        int specSize = MeasureSpec.getSize(heightMeasureSpec);
        
        //如果不指定限制,就是默认大小
        int result = 50;
        if(specMode == MeasureSpec.AT_MOST){
            //如果父组件被控件填充,则返回外边界大小
            result = specSize;
        }else if(specMode == MeasureSpec.EXACTLY){
            //如果指定空间大小,返回控件实际大小
            result = specSize;
        }
        return result;
    }
    
    

 

转载于:https://www.cnblogs.com/bbglz/p/4704177.html

内容概要:本文介绍了多种开发者工具及其对开发效率的提升作用。首先,介绍了两款集成开发环境(IDE):IntelliJ IDEA 以其智能代码补全、强大的调试工具和项目管理功能适用于Java开发者;VS Code 则凭借轻量级和多种编程语言的插件支持成为前端开发者的常用工具。其次,提到了基于 GPT-4 的智能代码生成工具 Cursor,它通过对话式编程显著提高了开发效率。接着,阐述了版本控制系统 Git 的重要性,包括记录代码修改、分支管理和协作功能。然后,介绍了 Postman 作为 API 全生命周期管理工具,可创建、测试和文档化 API,缩短前后端联调时间。再者,提到 SonarQube 这款代码质量管理工具,能自动扫描代码并检测潜在的质量问题。还介绍了 Docker 容器化工具,通过定义应用的运行环境和依赖,确保环境一致性。最后,提及了线上诊断工具 Arthas 和性能调优工具 JProfiler,分别用于生产环境排障和性能优化。 适合人群:所有希望提高开发效率的程序员,尤其是有一定开发经验的软件工程师和技术团队。 使用场景及目标:①选择合适的 IDE 提升编码速度和代码质量;②利用 AI 编程助手加快开发进程;③通过 Git 实现高效的版本控制和团队协作;④使用 Postman 管理 API 的全生命周期;⑤借助 SonarQube 提高代码质量;⑥采用 Docker 实现环境一致性;⑦运用 Arthas 和 JProfiler 进行线上诊断和性能调优。 阅读建议:根据个人或团队的需求选择适合的工具,深入理解每种工具的功能特点,并在实际开发中不断实践和优化。
内容概要:本文围绕低轨(LEO)卫星通信系统的星间切换策略展开研究,针对现有研究忽略终端运动影响导致切换失败率高的问题,提出了两种改进策略。第一种是基于预测的多属性无偏好切换策略,通过预测终端位置建立切换有向图,并利用NPGA算法综合服务时长、通信仰角和空闲信道数优化切换路径。第二种是多业务切换策略,根据不同业务需求使用层次分析法设置属性权重,并采用遗传算法筛选切换路径,同时引入多业务切换管理方法保障实时业务。仿真结果显示,这两种策略能有效降低切换失败率和新呼叫阻塞率,均衡卫星负载。 适合人群:从事卫星通信系统研究的科研人员、通信工程领域的研究生及工程师。 使用场景及目标:①研究和优化低轨卫星通信系统中的星间切换策略;②提高卫星通信系统的可靠性和效率;③保障不同类型业务的服务质量(QoS),特别是实时业务的需求。 其他说明:文章不仅详细介绍了两种策略的具体实现方法,还提供了Python代码示例,包括终端位置预测、有向图构建、多目标优化算法以及业务感知的资源分配等关键环节。此外,还设计了完整的仿真测试框架,用于验证所提策略的有效性,并提供了自动化验证脚本和创新点技术验证方案。部署建议方面,推荐使用Docker容器化仿真环境、Redis缓存卫星位置数据、GPU加速遗传算法运算等措施,以提升系统的实时性和计算效率。