Description
(我并不想告诉你题目名字是什么鬼)
有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n].
现在有若干组询问,对于每一个询问,我们给出若干个后缀(以其在S中出现的起始位置来表示),求这些后缀两两之间的LCP(LongestCommonPrefix)的长度之和.一对后缀之间的LCP长度仅统计一遍.
Input
第一行两个正整数n,m,分别表示S的长度以及询问的次数.
接下来一行有一个字符串S.
接下来有m组询问,对于每一组询问,均按照以下格式在一行内给出:
首先是一个整数t,表示共有多少个后缀.接下来t个整数分别表示t个后缀在字符串S中的出现位置.
Output
对于每一组询问,输出一行一个整数,表示该组询问的答案.由于答案可能很大,仅需要输出这个答案对于23333333333333333(一个巨大的质数)取模的余数.
题解:和CF的一个题几乎一模一样,都是利用虚树统计答案
#include <bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin) , freopen(s".out","w",stdout)
#define maxn 1200004
#define mod 23333333333333333
#define ll long long
using namespace std;
int edges,n,Q;
int hd[maxn],to[maxn],nex[maxn],tr[maxn];
char str[maxn];
void addedge(int u,int v,int c) //1001 个
{
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v;
}
namespace SAM
{
int last, tot;
int len[maxn<<1],f[maxn<<1],trans[maxn<<1][27];
void init() { last=tot=1; }
int extend(int c)
{
int np=++tot,p=last;
len[np]=len[p]+1,last=np;
while(p&&!trans[p][c]) trans[p][c]=np, p=f[p];
if(!p) f[np]=1;
else
{
int q=trans[p][c];
if(len[q]==len[p]+1) f[np]=q;
else
{
int nq=++tot;
len[nq]=len[p]+1;
memcpy(trans[nq],trans[q],sizeof(trans[q]));
f[nq]=f[q],f[q]=f[np]=nq;
while(p&&trans[p][c]==q) trans[p][c]=nq,p=f[p];
}
}
return np;
}
void build()
{
for(int i=2;i<=tot;++i) addedge(f[i],i,len[f[i]]-len[i]);
}
}
int tim;
int dfn[maxn],Top[maxn],hson[maxn],siz[maxn],fa[maxn],dis[maxn];
void dfs1(int u,int ff)
{
fa[u]=ff,siz[u]=1,dfn[u]=++tim,dis[u]=dis[ff]+1;
for(int i=hd[u];i;i=nex[i])
{
int v=to[i];
if(v==ff) continue;
dfs1(v,u);
siz[u]+=siz[v];
if(siz[v]>siz[hson[u]]) hson[u]=v;
}
}
void dfs2(int u,int tp)
{
Top[u]=tp;
if(hson[u]) dfs2(hson[u],tp);
for(int i=hd[u];i;i=nex[i])
{
int v=to[i];
if(v==fa[u]||v==hson[u]) continue;
dfs2(v,v);
}
}
int LCA(int x,int y)
{
while(Top[x]!=Top[y])
{
dis[Top[x]]>dis[Top[y]]?x=fa[Top[x]]:y=fa[Top[y]];
}
return dis[x]<dis[y]?x:y;
}
vector<int>G[maxn<<1];
ll ans=0;
int t=0;
int A[maxn<<1],mk[maxn<<1],size[maxn<<1],S[maxn<<1];
bool cmp(int i,int j)
{
return dfn[i]<dfn[j];
}
void addvir(int x,int y)
{
G[x].push_back(y);
}
void insert(int x)
{
if(t<=1) { S[++t]=x; return; }
int lca=LCA(S[t],x);
if(lca==S[t]) { S[++t]=x; return; }
while(t>1&&dis[S[t-1]]>=dis[lca]) addvir(S[t-1],S[t]),--t;
if(S[t]!=lca) addvir(lca,S[t]),S[t]=lca;
S[++t]=x;
}
void DP(int x)
{
size[x]=mk[x];
for(int i=0;i<G[x].size();++i)
{
DP(G[x][i]);
ans+=1ll*size[x]*size[G[x][i]]%mod*SAM::len[x]%mod;
ans%=mod;
size[x]+=size[G[x][i]];
}
G[x].clear();
mk[x]=0;
}
void work()
{
int k,a;
scanf("%d",&k);
for(int i=1;i<=k;++i) scanf("%d",&a), A[i]=tr[a], mk[A[i]]=1;
sort(A+1,A+1+k,cmp);
k=unique(A+1,A+1+k)-(A+1);
t=ans=0;
if(A[1]!=1) S[++t]=1;
for(int i=1;i<=k;++i) insert(A[i]);
while(t>1) addvir(S[t-1],S[t]),--t;
DP(1);
printf("%lld\n",ans);
}
int main()
{
// setIO("input");
scanf("%d%d%s",&n,&Q,str+1);
SAM::init();
for(int i=n;i>=1;--i) tr[i]=SAM::extend(str[i]-'a');
SAM::build();
dis[1]=1,dfs1(1,0),dfs2(1,1);
for(int i=1;i<=Q;++i)
{
work();
}
return 0;
}