hdu3507 Print Article

本文介绍了一个关于古董打印机成本优化的问题,主人公Zero拥有一台老式打印机,该打印机无法长时间工作且会磨损。为了完美地打印一篇包含N个单词的文章,每个单词都有一个打印成本Ci,每行打印k个单词会有固定成本Mi。文章探讨了如何计算最小化总打印成本的方法。

Print Article

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)


Problem Description
Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.
 

 

Input
There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤  500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
 

 

Output
A single number, meaning the mininum cost to print the article.
 

 

Sample Input
5 5 5 9 5 7 5
 

 

Sample Output
230
 

 

Author
Xnozero
 

 

Source
 

 

Recommend
zhengfeng   |   We have carefully selected several similar problems for you:   3506  3501  3504  3505  3498 
 
Code:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define INF 100000000000000008
using namespace std;
long long f[500008],sum[500008];
int n,m;

int main(){
    while(scanf("%d%d",&n,&m)==2){
    for(int i=1;i<=n;i++)
        f[i]=INF;
    for(int i=1;i<=n;i++){
        int x;
        scanf("%d",&x);
        sum[i]=sum[i-1]+x;
    }
    int flag=0,k=0;
    for(int i=1;i<=n;i++){
        for(int j=flag;j<=i;j++)
            if(f[i]>f[j]+(sum[i]-sum[j])*(sum[i]-sum[j])+m){
                k=j;
                f[i]=f[j]+(sum[i]-sum[j])*(sum[i]-sum[j])+m;
            }
        flag=k;
    }
    printf("%lld\n",f[n]);
}
}

 

转载于:https://www.cnblogs.com/WQHui/p/7575166.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值