Luogu2938 [USACO09FEB]股票市场Stock Market (DP,多重背包)

本文深入探讨了一种基于动态规划的股票交易策略算法,通过计算每日买卖股票的最大收益,实现资本增值。文章详细介绍了算法的实现过程,包括数据预处理、状态转移方程的建立以及最终收益的计算。

第n天不卖,视为卖了又原价买回

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int  a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int  a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long

#define ON_DEBUG

#ifdef ON_DEBUG

#define D_e_Line printf("\n\n----------\n\n")
#define D_e(x)  cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin);

#else

#define D_e_Line ;
#define D_e(x)  ;
#define Pause() ;
#define FileOpen() ;

#endif

struct ios{
    template<typename ATP>ios& operator >> (ATP &x){
        x = 0; int f = 1; char c;
        for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-')  f = -1;
        while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
        x*= f;
        return *this;
    }
}io;
using namespace std;

const int N = 53;

int f[500003];
int price[53][11];
int sum[53][11];
int main(){
//FileOpen();

    int n, D, m;
    io >> n >> D >> m;
    
    R(i,1,n){
        R(j,1,D){
            io >> price[i][j];
            sum[i][j] = price[i][j] - price[i][j - 1];
        }
    }
    
    R(i,2,D){
        Fill(f, 0);
        int maxx = 0;
        R(j,1,n){
            R(k,price[j][i - 1],m){
                f[k] = Max(f[k], f[k - price[j][i - 1]] + sum[j][i]),
                maxx = Max(maxx, f[k]);
            }   
        }
        m += maxx;
    }
    
    printf("%d", m);
    
    return 0;
}

1570282-20190728173732737-1272811654.png

转载于:https://www.cnblogs.com/bingoyes/p/11259237.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值