HDU 2639 背包第k优解

本文介绍了一种解决背包问题中寻找第K大价值的算法。通过动态规划的方法,结合二维DP数组实现,考虑了价值重复的情况,并提供了一个具体的代码实现案例。

Bone Collector II

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4824    Accepted Submission(s): 2514


Problem Description
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:

Here is the link: http://acm.hdu.edu.cn/showproblem.php?pid=2602

Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.

If the total number of different values is less than K,just ouput 0.
 

 

Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
 

 

Output
One integer per line representing the K-th maximum of the total value (this number will be less than 2 31).
 

 

Sample Input
3
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1
 

 

Sample Output
12
2
0
 

 

Author
teddy
 
Source
 题意:
有n件物品,每件物品有价值和体积,有容量为m的背包,求能够得到的第k大的价值
代码:
//以前的dp[V]数组再加一维dp[V]K]表示V状态时第k大的值,当枚举到第i个物品时
//dp[i][V]=max(dp[i-1][V],dp[i-1][V-v]),当前状态由两个状态转移来的所以前k大的值
//也是由两个状态的前k大的值转移来的。注意本体价值重复的算一个。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN=109;
const int MAXV=1009;
const int MAXK=39;
int dp[MAXV][MAXK];
int val[MAXN],vol[MAXN];
int N,V,K;
int main()
{
    int t;
    scanf("%d",&t);
    while(t--){
        scanf("%d%d%d",&N,&V,&K);
        for(int i=1;i<=N;i++) 
            scanf("%d",&val[i]);
        for(int i=1;i<=N;i++)
            scanf("%d",&vol[i]);
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=N;i++){
            for(int j=V;j>=vol[i];j--){
                int a1=1,a2=1,p1[39],p2[39];
                for(int c=1;c<=K;c++){
                    p1[c]=dp[j][c];
                    p2[c]=dp[j-vol[i]][c]+val[i];
                }
                p1[K+1]=p2[K+1]=-1;
                int c=0;
                while(c!=K){
                    int tmp=max(p1[a1],p2[a2]);
                    if(tmp==p1[a1]){
                        a1++;
                        if(tmp!=dp[j][c]) dp[j][++c]=tmp;
                        else if(tmp==0) dp[j][++c]=0;
                    }
                    else if(tmp==p2[a2]){
                        a2++;
                        if(tmp!=dp[j][c]) dp[j][++c]=tmp;
                        else if(tmp==0) dp[j][++c]=0;
                    }
                }
                //cout<<i<<" "<<j<<endl;
                //for(int k=1;k<=K;k++) cout<<dp[j][k]<<" ";
                //cout<<endl;
            }
        }
        printf("%d\n",dp[V][K]);
    }
    return 0;
}

 

 

转载于:https://www.cnblogs.com/--ZHIYUAN/p/6958678.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值