Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
public class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if (root == null) { return null; } if ((p.val - root.val) * (q.val - root.val) <= 0) { return root; } return lowestCommonAncestor(p.val - root.val < 0 ? root.left : root.right, p, q); } }
有的时候可以适当合并代码,使得代码更简洁。
重做的时候由于定式思维,没有考虑到这个是bst,直接当普通二叉树做了。。。
先把这个答案放这里吧。
public class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root == null) {
return null;
}
if (root == p || root == q) {
return root == p ? p : q;
}
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);
if (left == null) {
return right;
}
if (right == null) {
return left;
}
return root;
}
}
然后按照这个题目又写了一次,还是不如当初改进版简洁。。。
放个C++写法吧:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (root == NULL || (root -> val - p -> val) * (root -> val - q -> val) <= 0) {
return root;
}
return lowestCommonAncestor(root -> val - p -> val > 0 ? root -> left : root -> right, p, q);
}
};
非递归的方法:
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
while (root != NULL) {
if ((root -> val - p -> val) * (root -> val - q -> val) <= 0) {
return root;
}
root = root -> val - p -> val > 0 ? root -> left : root -> right;
}
return root;
}
};