hdu 1019 Least Common Multiple

本文介绍了一种求解多个正整数最小公倍数(LCM)的有效算法,并提供了完整的C++代码实现。该算法通过计算每对数的最大公约数(GCD),进而求得最小公倍数。

Least Common Multiple

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 44922    Accepted Submission(s): 16877


Problem Description
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.

 

 

Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ... nm where m is the number of integers in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
 

 

Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
 

 

Sample Input
2 3 5 7 15 6 4 10296 936 1287 792 1
 

 

Sample Output
105 10296
 
直接算就可以了,没输入一个数求当前数和前两个数的最小公倍数的最小公倍数。
 
#include<iostream>
#include<stdio.h>
using namespace std;
long long gcd(long long x,long long y)
{
    long long a;
    if(x<y) a=x,x=y,y=a;
    while(y!=0)
    {
        a=x%y;
        x=y;
        y=a;
    }
    return x;
}
int main()
{
    int t,n;
    long long tmp,end;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        end=1;
        for(int i=0;i<n;i++)
        {
            scanf("%I64d",&tmp);
            end=(tmp*end)/(gcd(tmp,end));
        }
        printf("%I64d\n",end);
    }
    return 0;
}
View Code

 

 

转载于:https://www.cnblogs.com/superxuezhazha/p/5539794.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值