洛谷P4549裴蜀定理

传送门

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#define re register
using namespace std;

inline int read(){
    char ch = getchar();
    int f = 1 , x = 0 ;
    while(ch > '9' || ch < '0'){if(ch == '-') f = -1;ch = getchar();}
    while(ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + ch - '0'; ch = getchar();}
    return x * f;
}

int n,x[25];
int ans;

inline int gcd(int a , int b) {
    if(b == 0)  return a;
    return gcd(b , a % b);
}

int main(){
    n = read(); 
    for(re int i = 1 ; i <= n ; ++i)  x[i] = read();
    for(re int i = 1 ; i <= n ; ++i) {
        if(x[i] < 0) x[i] = -x[i];
        ans = gcd(ans , x[i]);
    }
    printf("%d\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/Stephen-F/p/9932190.html

请转成markdown语法 中国剩余定理 引入 「物不知数」问题:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何? 即求满足以下条件的整数:除以 3 余 2,除以 5 余 3,除以 7 余 2。 该问题最早见于《孙子算经》中,并有该问题的具体解法。宋朝数学家秦九韶于 1247 年《数书九章》卷一、二《大衍类》对「物不知数」问题做出了完整系统的解答。上面具体问题的解答口诀由明朝数学家程大位在《算法统宗》中给出: 三人同行七十希,五树梅花廿一支,七子团圆正半月,除百零五便得知。 2\times 70+3\times 21+2\times 15=233=2\times 105+23,故答案为 23。 定义 中国剩余定理 (Chinese Remainder Theorem, CRT) 可求解如下形式的一元线性同余方程组(其中 n_1, n_2, \cdots, n_k 两两互质): \begin{cases} x &\equiv a_1 \pmod {n_1} \\ x &\equiv a_2 \pmod {n_2} \\ &\vdots \\ x &\equiv a_k \pmod {n_k} \\ \end{cases} 上面的「物不知数」问题就是一元线性同余方程组的一个实例。 过程 计算所有模数的积 n; 对于第 i 个方程: 计算 m_i=\frac{n}{n_i}; 计算 m_i 在模 n_i 意义下的 逆元 m_i^{-1}; 计算 c_i=m_im_i^{-1}(不要对 n_i 取模)。 方程组在模 n 意义下的唯一解为: x=\sum_{i=1}^k a_ic_i \pmod n。 实现 C++ Python LL CRT(int k, LL* a, LL* r) { LL n = 1, ans = 0; for (int i = 1; i <= k; i++) n = n * r[i]; for (int i = 1; i <= k; i++) { LL m = n / r[i], b, y; exgcd(m, r[i], b, y); // b * m mod r[i] = 1 ans = (ans + a[i] * m * b % n) % n; } return (ans % n + n) % n; } 证明 我们需要证明上面算法计算所得的 x 对于任意 i=1,2,\cdots,k 满足 x\equiv a_i \pmod {n_i}。 当 i\neq j 时,有 m_j \equiv 0 \pmod {n_i},故 c_j \equiv m_j \equiv 0 \pmod {n_i}。又有 c_i \equiv m_i \cdot (m_i^{-1} \bmod {n_i}) \equiv 1 \pmod {n_i},所以我们有: \begin{aligned} x&\equiv \sum_{j=1}^k a_jc_j &\pmod {n_i} \\ &\equiv a_ic_i &\pmod {n_i} \\ &\equiv a_i \cdot m_i \cdot (m^{-1}_i \bmod n_i) &\pmod {n_i} \\ &\equiv a_i &\pmod {n_i} \end{aligned} 即对于任意 i=1,2,\cdots,k,上面算法得到的 x 总是满足 x\equiv a_i \pmod{n_i},即证明了解同余方程组的算法的正确性。 因为我们没有对输入的 a_i 作特殊限制,所以任何一组输入 \{a_i\} 都对应一个解 x。 另外,若 x\neq y,则总存在 i 使得 x 和 y 在模 n_i 下不同余。 故系数列表 \{a_i\} 与解 x 之间是一一映射关系,方程组总是有唯一解。 解释 下面演示 CRT 如何解「物不知数」问题。 n=3\times 5\times 7=105; 三人同行 七十 希: n_1=3, m_1=n/n_1=35, m_1^{-1}\equiv 2\pmod 3,故 c_1=35\times 2=70; 五树梅花 廿一 支: n_2=5, m_2=n/n_2=21, m_2^{-1}\equiv 1\pmod 5,故 c_2=21\times 1=21; 七子团圆正 半月: n_3=7, m_3=n/n_3=15, m_3^{-1}\equiv 1\pmod 7,故 c_3=15\times 1=15; 所以方程组的唯一解为 x\equiv 2\times 70+3\times 21+2\times 15\equiv 233\equiv 23 \pmod {105}。(除 百零五 便得知) Garner 算法 CRT 的另一个用途是用一组比较小的质数表示一个大的整数。 例如,若 a 满足如下线性方程组,且 a < \prod_{i=1}^k p_i(其中 p_i 为质数): \begin{cases} a &\equiv a_1 \pmod {p_1} \\ a &\equiv a_2 \pmod {p_2} \\ &\vdots \\ a &\equiv a_k \pmod {p_k} \\ \end{cases} 我们可以用以下形式的式子(称作 a 的混合基数表示)表示 a: a = x_1 + x_2 p_1 + x_3 p_1 p_2 + \ldots + x_k p_1 \ldots p_{k-1} Garner 算法 将用来计算系数 x_1, \ldots, x_k。 令 r_{ij} 为 p_i 在模 p_j 意义下的 逆: p_i \cdot r_{i,j} \equiv 1 \pmod{p_j} 把 a 代入我们得到的第一个方程: a_1 \equiv x_1 \pmod{p_1} 代入第二个方程得出: a_2 \equiv x_1 + x_2 p_1 \pmod{p_2} 方程两边减 x_1,除 p_1 后得 \begin{aligned} a_2 - x_1 &\equiv x_2 p_1 &\pmod{p_2} \\ (a_2 - x_1) r_{1,2} &\equiv x_2 &\pmod{p_2} \\ x_2 &\equiv (a_2 - x_1) r_{1,2} &\pmod{p_2} \end{aligned} 类似地,我们可以得到: x_k=(\dots((a_k-x_1)r_{1,k}-x_2)r_{2,k})-\dots)r_{k-1,k} \bmod p_k 实现 该算法的时间复杂度为 O(k^2)。实际上 Garner 算法并不要求模数为质数,只要求模数两两互质,我们有如下伪代码: \begin{array}{ll} &\textbf{Chinese Remainder Algorithm }\operatorname{cra}(\mathbf{v}, \mathbf{m})\text{:} \\ &\textbf{Input}\text{: }\mathbf{m}=(m_0,m_1,\dots ,m_{n-1})\text{, }m_i\in\mathbb{Z}^+\land\gcd(m_i,m_j)=1\text{ for all } i\neq j\text{,} \\ &\qquad \mathbf{v}=(v_0,\dots ,v_{n-1}) \text{ where }v_i=x\bmod m_i\text{.} \\ &\textbf{Output}\text{: }x\bmod{\prod_{i=0}^{n-1} m_i}\text{.} \\ 1&\qquad \textbf{for }i\text{ from }1\text{ to }(n-1)\textbf{ do} \\ 2&\qquad \qquad C_i\gets \left(\prod_{j=0}^{i-1}m_j\right)^{-1}\bmod{m_i} \\ 3&\qquad x\gets v_0 \\ 4&\qquad \textbf{for }i\text{ from }1\text{ to }(n-1)\textbf{ do} \\ 5&\qquad \qquad u\gets (v_i-x)\cdot C_i\bmod{m_i} \\ 6&\qquad \qquad x\gets x+u\prod_{j=0}^{i-1}m_j \\ 7&\qquad \textbf{return }(x) \end{array} 可以发现在第六行中的计算过程对应上述混合基数的表示。 应用 某些计数问题或数论问题出于加长代码、增加难度、或者是一些其他原因,给出的模数:不是质数! 但是对其质因数分解会发现它没有平方因子,也就是该模数是由一些不重复的质数相乘得到。 那么我们可以分别对这些模数进行计算,最后用 CRT 合并答案。 下面这道题就是一个不错的例子。 洛谷 P2480 [SDOI2010] 古代猪文 给出 G,n( 1 \leq G,n \leq 10^9),求: G^{\sum_{k\mid n}\binom{n}{k}} \bmod 999~911~659 首先,当 G=999~911~659 时,所求显然为 0。 否则,根据 欧拉定理,可知所求为: G^{\sum_{k\mid n}\binom{n}{k} \bmod 999~911~658} \bmod 999~911~659 现在考虑如何计算: \sum_{k\mid n}\binom{n}{k} \bmod 999~911~658 因为 999~911~658 不是质数,无法保证 \forall x \in [1,999~911~657], x 都有逆元存在,上面这个式子我们无法直接计算。 注意到 999~911~658=2 \times 3 \times 4679 \times 35617,其中每个质因子的最高次数均为一,我们可以考虑分别求出 \sum_{k\mid n}\binom{n}{k} 在模 2, 3, 4679, 35617 这几个质数下的结果,最后用中国剩余定理来合并答案。 也就是说,我们实际上要求下面一个线性方程组的解: \begin{cases} x \equiv a_1 \pmod 2\\ x \equiv a_2 \pmod 3\\ x \equiv a_3 \pmod {4679}\\ x \equiv a_4 \pmod {35617} \end{cases} 而计算一个组合数对较小的质数取模后的结果,可以利用 卢卡斯定理。 扩展:模数不互质的情况 两个方程 设两个方程分别是 x\equiv a_1 \pmod {m_1}、 x\equiv a_2 \pmod {m_2}; 将它们转化为不定方程: x=m_1p+a_1=m_2q+a_2,其中 p, q 是整数,则有 m_1p-m_2q=a_2-a_1。 由 裴蜀定理,当 a_2-a_1 不能被 \gcd(m_1,m_2) 整除时,无解; 其他情况下,可以通过 扩展欧几里得算法 解出来一组可行解 (p, q); 则原来的两方程组成的模方程组的解为 x\equiv b\pmod M,其中 b=m_1p+a_1, M=\text{lcm}(m_1, m_2)。 多个方程 用上面的方法两两合并即可。
08-16
<think>好的,我现在需要处理用户关于裴蜀定理的查询。用户想了解其数学原理及应用。首先,我得确认自己对这个定理的理解是否正确。裴蜀定理,又称贝祖定理,主要涉及两个整数的最大公约数与其线性组合的关系。记得定理的内容是:对于不全为零的整数a和b,存在整数x和y,使得ax + by = gcd(a, b)。同时,这个gcd(a, b)是能够表示为ax + by的最小正整数。 接下来,用户可能想知道应用,比如在数论、密码学或者算法中的应用。比如,扩展欧几里得算法就是基于裴蜀定理的,用来求解x和y的值。此外,在解决线性同余方程、模逆元计算等方面也有应用,这些都是密码学中的常见问题。 需要检查是否有遗漏的关键点。比如,定理的推广形式,多个整数的情况,或者它在其他数学领域中的应用,如代数几何中的贝祖定理(虽然可能不同,但用户可能混淆)。需要明确区分。 然后,考虑是否需要搜索补充信息,确保准确性。比如,查找最新的应用实例,或者是否有常见的误解需要澄清。例如,定理中的x和y并不唯一,且如何在实际中求解这些系数。 关于数学原理部分,需要详细说明定理的证明思路,可能涉及欧几里得算法的步骤。但用户的问题可能不需要详细证明,而是更关注结论和应用。不过,适当的原理解释有助于理解应用的基础。 应用部分,可以举具体的例子,如解不定方程,或者RSA算法中求模逆元的过程。此外,在计算机科学中,扩展欧几里得算法的实现也是基于此定理,可能需要给出代码示例,但用户的问题中没有明确要求代码,不过如果有的话会更实用。 需要确保回答结构符合用户的要求:多个方法或步骤,换行分隔,避免使用步骤词汇。可能需要分点阐述数学原理、应用场景、实例等。 最后,生成相关问题时要基于原问题,比如定理的证明方法、扩展欧几里得算法的具体步骤、在密码学中的具体应用案例等。确保问题相关且有深度,帮助用户进一步探索。 现在需要整合这些思考,按照用户的格式要求组织答案,确保引用来源正确,不堆砌在末尾,每个部分清晰。同时,检查是否满足所有格式要求,特别是数学公式和代码的格式,以及相关问题的正确位置和格式。</think>裴蜀定理(Bézout's Identity)是数论中的基础定理,描述了整数线性组合与最大公约数的关系。设$a,b$为不全为零的整数,其最大公约数为$\gcd(a,b)$,则存在整数$x,y$使得方程$ax + by = \gcd(a,b)$成立。该定理可推广到多个整数情形:对于$n$个整数$a_1,a_2,...,a_n$,其线性组合的最小正整数等于它们的最大公约数。 **数学原理** 1. **存在性证明**:通过欧几里得算法构造性证明。递归计算$\gcd(a,b)$时,反向代入余数表达式可得到$x$和$y$的具体表达式。例如计算$\gcd(252, 105)$: $$252 = 2 \times 105 + 42$$ $$105 = 2 \times 42 + 21$$ $$42 = 2 \times 21 + 0$$ 反向推导得$21 = 105 - 2 \times 42 = 105 - 2 \times (252 - 2 \times 105) = 5 \times 105 - 2 \times 252$,即$x=-2,y=5$。 2. **唯一性条件**:解的全体可表示为$x = x_0 + \frac{b}{d}k$,$y = y_0 - \frac{a}{d}k$($k \in \mathbb{Z}$,$d=\gcd(a,b)$)。当要求$x,y$满足特定约束时(如最小非负解),解唯一。 **核心应用** - **解线性不定方程**:方程$ax + by = c$有整数解当且仅当$\gcd(a,b) \mid c$。例如方程$12x + 15y = 3$有解,因$\gcd(12,15)=3$,且$3 \mid 3$。 - **模逆元计算**:若$a$与$m$互质,则存在$x$使得$ax \equiv 1 \pmod{m}$,此$x$即为$a$模$m$的逆元。通过扩展欧几里得算法实现: ```python def extended_gcd(a, b): if b == 0: return a, 1, 0 d, x1, y1 = extended_gcd(b, a % b) x = y1 y = x1 - (a // b) * y1 return d, x, y ``` - **密码学基础**:RSA算法中密钥生成依赖模逆元计算,而椭圆曲线密码体制利用推广的裴蜀定理构造双线性对。 **几何解释**:在平面坐标系中,直线$ax + by = c$通过整数点的充要条件是$\gcd(a,b) \mid c$。若$\gcd(a,b)=1$,则该直线在整数格点上无限密集。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值