[Leetcode 65] 120 Triangle

本文介绍了一种求解三角形最小路径和的算法。该算法通过动态规划从上到下计算每一步的最短路径长度,最终找到从顶点到底部的最小路径总和。算法的时间复杂度为 O(n),空间复杂度也为 O(n),实现简洁高效。

Problem:

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

 

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

 

Analysis:

Basically, this is a simple dynamic programming problem. Start from the first level, at level i, computing the possible min length of each position at level i give the i-1 level. And after computing the last level, use find_min funnction to get the minimum value of the path. Besides, this solution is an online version. It can always give the current solution.

This time complexity is O(n) and the space complecity is O(n).

 

Code:

 1 class Solution {
 2 public:
 3     int minimumTotal(vector<vector<int> > &triangle) {
 4         // Start typing your C/C++ solution below
 5         // DO NOT write int main() function
 6         for (int i=1; i<triangle.size(); i++) {
 7         
 8             for (int j=0; j<i+1; j++) {
 9                 if (j == 0) //first in a row
10                     triangle[i][0] += triangle[i-1][0]; 
11                 else if (j == i) //last in a row
12                     triangle[i][i] += triangle[i-1][i-1];
13                 else // two choice & get smaller
14                     triangle[i][j] += min(triangle[i-1][j-1], triangle[i-1][j]);
15             }
16         }
17         
18         return find_min(triangle[triangle.size()-1]);
19     }
20     
21     int min(int a, int b) {
22         return (a<b)? a : b;
23     }
24     
25     int find_min(vector<int> v) {
26         int min = v[0];
27         
28         for (int i=1; i<v.size(); i++) {
29             if (v[i] < min)
30                 min = v[i];
31         }
32         
33         return min;
34     }
View Code

 

转载于:https://www.cnblogs.com/freeneng/p/3192516.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值