k邻近

本文介绍了K近邻算法的基本原理及其在电影分类和手写数字识别中的应用。通过实例演示了算法的具体实施步骤,包括数据收集、准备、分析、测试及使用等阶段,并提供了Python实现代码。

测试数据:http://labfile.oss.aliyuncs.com/courses/777/lab3_0930.zip

 

简单地说,k近邻算法采用测量不同特征值之间的距离方法进行分类。

k-近邻算法

  • 优点:精度高、对异常值不敏感、无数据输入假定。
  • 缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值型和标称型。

它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

现在我们回到前面电影分类的例子,使用k近邻算法分类爱情片和动作片。有人曾经统计过很多电影的打斗镜头和接吻镜头,图2-1显示了6部电影的打斗和接吻镜头数。假如有一部未看过的电影,如何确定它是爱情片还是动作片呢?我们可以使用kNN来解决这个问题。

此处输入图片的描述

首先我们需要知道这个未知电影存在多少个打斗镜头和接吻镜头,图2-1中问号位置是该未知电影出现的镜头数图形化展示,具体数字参见表2-1。

表2-1 每部电影的打斗镜头数、接吻镜头数以及电影评估类型

电影名称打斗镜头接吻镜头电影类型
California Man3104爱情片
He’s Not Really into Dudes2100爱情片
Beautiful Woman181爱情片
Kevin Longblade10110动作片
Robo Slayer 3000995动作片
Amped II982动作片
?1890未知

即使不知道未知电影属于哪种类型,我们也可以通过某种方法计算出来。首先计算未知电影与样本集中其他电影的距离,如表2-2所示。此处暂时不要关心如何计算得到这些距离值,使用Python实现电影分类应用时,会提供具体的计算方法。

表2-2 已知电影与未知电影的距离

电影名称与未知电影的距离
California Man20.5
He’s Not Really into Dudes18.7
Beautiful Woman19.2
Kevin Longblade115.3
Robo Slayer 3000117.4
Amped II118.9

现在我们得到了样本集中所有电影与未知电影的距离,按照距离递增排序,可以找到k个距离最近的电影。假定k=3,则三个最靠近的电影依次是He’s Not Really into DudesBeautiful WomanCalifornia Man。k近邻算法按照距离最近的三部电影的类型,决定未知电影的类型,而这三部电影全是爱情片,因此我们判定未知电影是爱情片。

本章主要讲解如何在实际环境中应用k近邻算法,同时涉及如何使用Python工具和相关的机器学习术语。按照1.5节开发机器学习应用的通用步骤,我们使用Python语言开发k近邻算法的简单应用,以检验算法使用的正确性。

k近邻算法的一般流程

  1. 收集数据:可以使用任何方法。
  2. 准备数据:距离计算所需要的数值,最好是结构化的数据格式。
  3. 分析数据:可以使用任何方法。
  4. 训练算法:此步骤不适用于k近邻算法。
  5. 测试算法:计算错误率。
  6. 使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。

准备:使用Python导入数据

随后可以使用 vim 或者 sublime 对我们的 kNN.py文件进行编辑。在kNN.py文件中增加下面的代码:

    from numpy import *
    import operator

    def createDataSet():
        group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
        labels = ['A','A','B','B']
        return group, labels

在上面的代码中,我们导入了两个模块:第一个是科学计算包NumPy;第二个是运算符模块,k近邻算法执行排序操作时将使用这个模块提供的函数,后面我们将进一步介绍。

然后保存kNN.py文件,确保我们在 kNN.py 文件的路径下(/home/shiyanlou/Code/KNN),在 Xfce 终端内输入ipython,进入Python交互式开发环境。

进入Python开发环境之后,输入下列命令导入上面编辑的程序模块:

    >>> import kNN

上述命令导入kNN模块。为了确保输入相同的数据集,kNN模块中定义了函数createDataSet,在Python命令提示符下输入下列命令:

    >>> group,labels = kNN.createDataSet()

上述命令创建了变量grouplabels,在Python命令提示符下输入下列命令,输入变量的名字以检验是否正确地定义变量:

    >>> group
    array([[ 1. , 1.1],
           [ 1. , 1. ],
           [ 0. , 0. ],
           [ 0. , 0.1]])
    >>> labels
    ['A', 'A', 'B', 'B']

这里有4组数据,每组数据有两个我们已知的属性或者特征值。上面的group矩阵每行包含一个不同的数据,我们可以把它想象为某个日志文件中不同的测量点或者入口。由于人类大脑的限制,我们通常只能可视化处理三维以下的事务。因此为了简单地实现数据可视化,对于每个数据点我们通常只使用两个特征。

向量labels包含了每个数据点的标签信息,labels包含的元素个数等于group矩阵行数。这里我们将数据点(1, 1.1)定义为类A,数据点(0, 0.1)定义为类B。为了说明方便,例子中的数值是任意选择的,并没有给出轴标签,图2-2是带有类标签信息的四个数据点。

此处输入图片的描述

现在我们已经知道Python如何解析数据,如何加载数据,以及kNN算法的工作原理,接下来我们将使用这些方法完成分类任务。

如何测试分类器

在上文中我们提到使用 kNN 算法能够判断出一个电影是动作片还是爱情片,即我们使用 kNN 算法能够实现一个分类器。我们需要检验分类器给出的答案是否符合我们的预期。读者可能会问:“分类器何种情况下会出错?”或者“答案是否总是正确的?”答案是否定的,分类器并不会得到百分百正确的结果,我们可以使用多种方法检测分类器的正确率。此外分类器的性能也会受到多种因素的影响,如分类器设置和数据集等。不同的算法在不同数据集上的表现可能完全不同,这也是本部分的6章都在讨论分类算法的原因所在。

为了测试分类器的效果,我们可以使用已知答案的数据,当然答案不能告诉分类器,检验分类器给出的结果是否符合预期结果。通过大量的测试数据,我们可以得到分类器的错误率——分类器给出错误结果的次数除以测试执行的总数。错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0,在这种情况下,分类器根本就无法找到一个正确答案。读者可以在后面章节看到实际的数据例子。

上一节介绍的例子已经可以正常运转了,但是并没有太大的实际用处。接下来本书将使用手写识别系统的测试程序检测k近邻算法的效果。下面下载所需资料:

$ wget http://labfile.oss.aliyuncs.com/courses/777/lab3_0930.zip
$ unzip lab3_0930.zip

准备数据:将图像转换为测试向量

为了使用前面两个例子的分类器,我们必须将图像格式化处理为一个向量。我们将把一个32x32的二进制图像矩阵转换为1x1024的向量,这样前两节使用的分类器就可以处理数字图像信息了。

我们首先编写一段函数img2vector,将图像转换为向量:该函数创建1x1024的NumPy数组,然后打开给定的文件,循环读出文件的前32行,并将每行的头32个字符值存储在NumPy数组中,最后返回数组。我们在 kNN.py中加入如下代码:

from numpy import *

def img2vector(filename):
    # 创建向量
    returnVect = zeros((1,1024))

    # 打开数据文件,读取每行内容
    fr = open(filename)

    for i in range(32):
        # 读取每一行
        lineStr = fr.readline()

        # 将每行前32字符转成int存入向量
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])

    return returnVect

在iPython命令行中输入下列命令测试img2vector函数,然后与文本编辑器打开的文件进行比较:(因为 kNN.py 文件经过了更新,需要reload 这个模块)

    >>> reload(kNN)
    >>> testVector = kNN.img2vector('digits/testDigits/0_1.txt')
    >>> testVector[0,0:31]

分析数据

计算“距离”。

有一定的样本数据和这些数据所属的分类后,输入一个测试数据,我们就可以根据算法得出该测试数据属于哪个类别,此处的类别为0-9十个数字,就是十个类别。

算法实现过程:

  1. 计算已知类别数据集中的点与当前点之间的距离;
  2. 按照距离递增次序排序;
  3. 选取与当前点距离最小的k个点;
  4. 确定前k个点所在类别的出现频率;
  5. 返回前k个点出现频率最高的类别作为当前点的预测分类。

算法实现为函数 classify0(),函数的参数包括:

  1. inX:用于分类的输入向量
  2. dataSet:输入的训练样本集
  3. labels:样本数据的类标签向量
  4. k:用于选择最近邻居的数目

kNN.py 中加入如下代码

import operator

def classify0(inX, dataSet, labels, k):
    # 获取样本数据数量
    dataSetSize = dataSet.shape[0]

    # 矩阵运算,计算测试数据与每个样本数据对应数据项的差值
    diffMat = tile(inX, (dataSetSize,1)) - dataSet

    # sqDistances 上一步骤结果平方和
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)

    # 取平方根,得到距离向量
    distances = sqDistances**0.5

    # 按照距离从低到高排序
    sortedDistIndicies = distances.argsort()     
    classCount={}          

    # 依次取出最近的样本数据
    for i in range(k):
        # 记录该样本数据所属的类别
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1

    # 对类别出现的频次进行排序,从高到低
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)

    # 返回出现频次最高的类别
    return sortedClassCount[0][0]

 

我们使用欧氏距离公式,计算两个向量点xA和xB之间的距离:

此处输入图片的描述

例如,点(0, 0)与(1, 2)之间的距离计算为:

此处输入图片的描述

如果数据集存在4个特征值,则点(1, 0, 0, 1)与(7, 6, 9, 4)之间的距离计算为:

此处输入图片的描述

计算完所有点之间的距离后,可以对数据按照从小到大的次序排序。然后,确定前k个距离最小元素所在的主要分类,输入k总是正整数;最后,将classCount字典分解为元组列表,然后使用程序第二行导入运算符模块的itemgetter方法,按照第二个元素的次序对元组进行排序。此处的排序为逆序,即按照从最大到最小次序排序,最后返回发生频率最高的元素标签。

为了预测数据所在分类,在Python提示符中输入下列命令:

    >>> reload(kNN)
    >>> group,labels = kNN.createDataSet()
    >>> kNN.classify0([0,0], group, labels, 3)

输出结果应该是B,大家也可以改变输入[0, 0]为其他值,测试程序的运行结果。

到现在为止,我们已经构造了第一个分类器,使用这个分类器可以完成很多分类任务。从这个实例出发,构造使用分类算法将会更加容易。

测试算法:使用k近邻算法识别手写数字

已经将数据处理成分类器可以识别的格式,本节我们将这些数据输入到分类器,检测分类器的执行效果。程序清单2-6所示的自包含函数handwritingClassTest()是测试分类器的代码,将其写入kNN.py文件中。在写入这些代码之前,我们必须确保将from os import listdir写入文件的起始部分,这段代码的主要功能是从os模块中导入函数listdir,它可以列出给定目录的文件名。

测试的步骤:

  1. 读取训练数据到向量(手写图片数据),从数据文件名中提取类别标签列表(每个向量对应的真实的数字)
  2. 读取测试数据到向量,从数据文件名中提取类别标签
  3. 执行KNN算法对测试数据进行测试,得到分类结果
  4. 与实际的类别标签进行对比,记录分类错误率
  5. 打印每个数据文件的分类数据及错误率作为最终的结果
from os listdir
from numpy import *
import operator

def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group, labels
    
def img2vector(filename):
    # 创建向量
    returnVect = zeros((1,1024))

    # 打开数据文件,读取每行内容
    fr = open(filename)

    for i in range(32):
        # 读取每一行
        lineStr = fr.readline()

        # 将每行前32字符转成int存入向量
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])

    return returnVect

def classify0(inX, dataSet, labels, k):
    # 获取样本数据数量
    dataSetSize = dataSet.shape[0]

    # 矩阵运算,计算测试数据与每个样本数据对应数据项的差值
    diffMat = tile(inX, (dataSetSize,1)) - dataSet

    # sqDistances 上一步骤结果平方和
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)

    # 取平方根,得到距    离向量
    distances = sqDistances**0.5

    # 按照距离从低到高排序
    sortedDistIndicies = distances.argsort()     
    classCount={}          

    # 依次取出最近的样本数据
    for i in range(k):
        # 记录该样本数据所属的类别
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1

    # 对类别出现的频次进行排序,从高到低
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)

    # 返回出现频次最高的类别
    return sortedClassCount[0][0]
    
def handwritingClassTest():
    # 样本数据的类标签列表
    hwLabels = []

    # 样本数据文件列表
    trainingFileList = listdir('digits/trainingDigits')
    m = len(trainingFileList)

    # 初始化样本数据矩阵(M*1024)
    trainingMat = zeros((m,1024))

    # 依次读取所有样本数据到数据矩阵
    for i in range(m):
        # 提取文件名中的数字
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])
        hwLabels.append(classNumStr)

        # 将样本数据存入矩阵
        trainingMat[i,:] = img2vector('digits/trainingDigits/%s' % fileNameStr)

    # 循环读取测试数据
    testFileList = listdir('digits/testDigits')

    # 初始化错误率
    errorCount = 0.0
    mTest = len(testFileList)

    # 循环测试每个测试数据文件
    for i in range(mTest):
        # 提取文件名中的数字
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])

        # 提取数据向量
        vectorUnderTest = img2vector('digits/testDigits/%s' % fileNameStr)

        # 对数据文件进行分类
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)

        # 打印KNN算法分类结果和真实的分类
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)

        # 判断KNN算法结果是否准确
        if (classifierResult != classNumStr): errorCount += 1.0

    # 打印错误率
    print "\nthe total number of errors is: %d" % errorCount
    print "\nthe total error rate is: %f" % (errorCount/float(mTest))

 

 

转载于:https://www.cnblogs.com/xiaohengheng/p/6656187.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值