【题解】 hdu2955 Robberies

本文介绍了一个基于背包问题的算法,该算法模拟了一名虚拟劫匪如何在不同银行间选择抢劫目标,以最大化收益同时确保被抓概率低于设定阈值。通过动态规划的方法,实现了对每个银行的金钱数额和被抓概率进行评估。

有抱负的罗伊·劫匪已经看过很多美国电影,他知道坏人通常会被抓住,经常是因为他们太贪心了。他决定在银行抢劫案中工作一段时间,然后退休后到一所大学从事一份舒适的工作。

题目:

罗伊去几个银行偷盗,他既想多投点钱,又想尽量不被抓到。已知各个银行的金钱数和被抓的概率,以及罗伊能容忍的最大被抓概率。求他最多能偷到多少钱?

思路:

背包问题

  • 原先想的是把概率当做背包,在这个范围内最多能抢多少钱。
    但是问题出在概率这里,一是因为概率是浮点数,用作背包必须扩大10^n倍来用。二是最大不被抓概率不是简单的累加。二是p = (1-p1)(1-p2)(1-p3) 其中p为最大不被抓概率,p1,p2,p3为各个银行被抓概率。

可行性上行不通

  • 第二次想到把银行的钱当做背包,把概率当做价值,总容量为所有银行的总钱数,求不超过被抓
    概率的情况下,最大的背包容量是多少
    dp[j] = max(dp[j],dp[j-Bag[i].v]*(1-Bag[i].p))(dp[j]表示在被抢概率j之下能抢的钱);

    代码

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;

struct bag
{
    int v;
    double p;
}Bag[10010];
double dp[10010];

int main()
{
    int T,N;
    double p;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lf %d",&p,&N);
        int sum = 0;
        for(int i = 0; i < N; i++)
        {
            scanf("%d%lf",&Bag[i].v,&Bag[i].p);
            sum += Bag[i].v;
        }
        memset(dp,0,sizeof(dp));
        dp[0] = 1;
        for(int i = 0; i < N; i++)
        {
            for(int j = sum; j >= Bag[i].v; j--)
            {
                dp[j] = max(dp[j],dp[j-Bag[i].v]*(1-Bag[i].p));
            }
        }

        for(int i = sum; i >= 0; i--)
        {
            if(dp[i] > 1-p)
            {
                printf("%d\n",i);
                break;
            }
        }
    }
    return 0;
}

转载于:https://www.cnblogs.com/bbqub/p/hdu_2955.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值