Poj 1651 Multiplication Puzzle(区间dp)

本文介绍了一个经典的区间动态规划问题——乘法谜题。玩家的目标是从一排含有正整数的卡片中,通过特定顺序取卡片来使得总得分最小。文章详细解释了问题背景、输入输出格式及样例,并给出了C++代码实现。
Multiplication Puzzle
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 10010 Accepted: 6188

Description

The multiplication puzzle is played with a row of cards, each containing a single positive integer. During the move player takes one card out of the row and scores the number of points equal to the product of the number on the card taken and the numbers on the cards on the left and on the right of it. It is not allowed to take out the first and the last card in the row. After the final move, only two cards are left in the row. 

The goal is to take cards in such order as to minimize the total number of scored points. 

For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring 
10*1*50 + 50*20*5 + 10*50*5 = 500+5000+2500 = 8000

If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be 
1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150.

Input

The first line of the input contains the number of cards N (3 <= N <= 100). The second line contains N integers in the range from 1 to 100, separated by spaces.

Output

Output must contain a single integer - the minimal score.

Sample Input

6
10 1 50 50 20 5

Sample Output

3650

Source

Northeastern Europe 2001, Far-Eastern Subregion
 
题解:
区间dp。。。设dp[l][r]表示区间[l,r]的最优解,则状态转移如下:
1、当r-l=2时,也即只有三个数时,显然dp[l][r] = a[l]*a[l+1]*a[r];
2、当r-l>2时,对区间的最后一个被拿走的数进行枚举,则dp[l][r] = min(dp[l][r], dp[l][i]+dp[i][r]+a[l]*a[i]*a[r]),其中l<i<r。
 
#include <iostream>
#include<cstdio>
#include<cstring>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<deque>
#include<algorithm>
#include<string>
#include<stack>
#include<cmath>
using namespace std;
int ans,n;
int a[105];
int dp[105][105];
const int inf=0x3f3f3f3f;
int  dfs(int l,int r)
{
    if(r-l<2) return 0;
    if(r-l==2) return dp[l][r]=a[l]*a[l+1]*a[r]; //起始值
    if (dp[l][r]!=inf) return dp[l][r];
    for(int i=l+1;i<r;i++)
     dp[l][r]=min(dp[l][r],dfs(l,i)+dfs(i,r)+a[l]*a[i]*a[r]);
    return dp[l][r];
}
int main()
{
    while(~scanf("%d",&n))
    {
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        ans=0;
        memset(dp,inf,sizeof(dp));
        printf("%d\n",dfs(1,n));
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/stepping/p/6850158.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值