Multiplication Puzzle (区间dp)

本文介绍了一种使用区间动态规划解决的问题,目标是在遵循特定规则的情况下,从一系列正整数中选择并移除数字,使得累积得分最小。文章详细解释了状态定义、状态转移方程,并提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

The multiplication puzzle is played with a row of cards, each containing a single positive integer. During the move player takes one card out of the row and scores the number of points equal to the product of the number on the card taken and the numbers on the cards on the left and on the right of it. It is not allowed to take out the first and the last card in the row. After the final move, only two cards are left in the row.

The goal is to take cards in such order as to minimize the total number of scored points.

For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring
10*1*50 + 50*20*5 + 10*50*5 = 500+5000+2500 = 8000

If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be
1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150.

Input

The first line of the input contains the number of cards N (3 <= N <= 100). The second line contains N integers in the range from 1 to 100, separated by spaces.

Output

Output must contain a single integer - the minimal score.

Sample Input

6
10 1 50 50 20 5

Sample Output

3650


题意:

给出一堆数字,每次可以移除一个数字(首尾数字不能移除),移除一个数字可以得到的分数为相邻两个数字以及他本身这三个数的乘积,最终会剩下首尾两个数字。问可以得到的最小分数为多少?

分析:

明显的区间dp
定义状态 dp[i][j]dp[i][j] :将第ii个至第j个中间的数字全部取走可以得到的最小分数
枚举在区间(i,j)(i,j)最后一个被取走的数字为第kk个,则有转移方程

dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+a[i]a[k]a[j])

代码:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
#include<time.h>
#include<iostream>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>

using namespace std;

#define bll long long
const int maxn = 110;
int n,a[maxn],dp[maxn][maxn];

int main()
{
    while (scanf("%d",&n)!=EOF)
    {
        for (int i=1;i<=n;i++) scanf("%d",&a[i]);
        memset(dp,0x3f,sizeof(dp));
        for (int l=2;l<n;l++)
        {
            for (int i=1;i<=n-l;i++)
            {
                int j = i+l;
                for (int k=i+1;k<=j-1;k++)
                {
                    int tmp = a[i]*a[j]*a[k];
                    if (k > i+1) tmp += dp[i][k];
                    if (j > k+1) tmp += dp[k][j];
                    dp[i][j] = min(dp[i][j],tmp);
                }
            }
        }
        printf("%d\n",dp[1][n]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值