likelihood function

本文介绍了统计学中的似然函数概念,包括离散概率分布和连续概率分布中的定义。此外,还探讨了似然函数的自然对数(log-likelihood)在实际应用中的计算优势。

统计学中,似然函数是给定数据的统计模型的参数的函数。

变量值集合:θ,已知结果x的似然函数和这些观察已知变量值的观察结果的概率相等:

\mathcal{L}(\theta |x) = P(x | \theta)

似然函数在离散概率分布和连续概率分布中不同:

离散概率分布:

假设X为一个随机变量,符合离散概率分布p,基于参数θ。则函数为:

{\displaystyle {\mathcal {L}}(\theta |x)=p_{\theta }(x)=P_{\theta }(X=x)}

被认为是θ的函数,称之为似然函数。

连续概率分布:

设X为符合基于变量θ,密度函数为f的绝对连续分布。则函数为:

\mathcal{L}(\theta |x) = f_{\theta} (x), \,

Log-likelihood

对于很多应用,似然函数的自然对数,称为对数-似然(log-likelihood),很适合计算。因为对数是单调函数。

找到一个函数的最大值,通常涉及对函数的求导,并求解参数使函数最大化。并且通常对log-likelihood最大化简单于直接对原始函数求解。

L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,
L ( θ | x ) = f θ ( x ) , {\displaystyle {\mathcal {L}}(\theta |x)=f_{\theta }(x),\,} \mathcal{L}(\theta |x) = f_{\theta} (x), \,

转载于:https://www.cnblogs.com/dalu610/p/6370918.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值