Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 42600 Accepted Submission(s): 18885
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Note: the number of first circle should always be 1.

Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
Source
题目链接:HDU 1016
经典的DFS回溯题目,以前一直想做来着,但是不懂回溯搜索,现在类似的一些题还是挺简单的……,这题用输出外挂可以优化到200+MS,题意是把1-n中所有自然数全部排完才能算一个环,刚开始搞错了输出爆炸……
代码:
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define MM(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=50;
int prime[N];
int pos[N],vis[N];
int n;
void Out(int a)
{
if(a>9)
Out(a/10);
putchar(a%10+'0');
}
inline bool check()
{
for (int i=1; i<=n; ++i)
{
if(!vis[i])
return false;
}
return true;
}
void dfs(int now)
{
if(now==n)
{
if(prime[pos[now]+pos[1]]&&check())
{
for (int i=1; i<=n; ++i)
{
Out(pos[i]);
putchar(i==n?'\n':' ');
}
}
return ;
}
for (int i=2; i<=n; ++i)
{
if(!vis[i]&&prime[i+pos[now]]&&now<=n)
{
vis[i]=1;
pos[now+1]=i;
dfs(now+1);
pos[now+1]=0;
vis[i]=0;
}
}
}
int main(void)
{
int i,j;
for (i=0; i<N; ++i)
prime[i]=1;
prime[1]=0;
for (i=2; i<N; ++i)
for (j=2; j*i<N; ++j)
prime[i*j]=0;
int tcase=0,m;
while (~scanf("%d",&n))
{
MM(pos,0);
vis[1]=1;
pos[1]=1;
printf("Case %d:\n",++tcase);
dfs(1);
putchar('\n');
}
return 0;
}