吴恩达Machine Learning学习笔记(二)--多变量线性回归

博客聚焦回归任务中的多变量线性回归,介绍了其公式、参数更新采用的梯度下降算法,分析了影响该算法的因素,如变量标准化和学习速率。还阐述了改善特征和假设函数的多项式回归方法,以及显式求解theta的正规方程,同时指出正规方程可能不收敛的情况及解决办法。

回归任务

多变量线性回归

公式

  

  h为假设,theta为模型参数(代表了特征的权重),x为特征的值

参数更新

  梯度下降算法

影响梯度下降算法的因素

  (1)加速梯度下降:通过让每一个输入值大致在相同的范围可以加速梯度下降,因为theta在x的范围比较小的时候收敛更快,

    x的范围不平整时收敛慢且会发生震荡。即对变量进行标准化处理,方法为减均值,除标准差

    

  (2)学习速率:alpha太小,能收敛但速度太慢;alpha太大不能保证每一步都会使代价函数下降,且可能会导致不收敛

改善特征和假设函数的方法--多项式回归

  (1)把多个特征混合为一个特征,如x1*x2作为一个特征

  (2)通过对特征取平方,立方,平方根或其他形式来改变曲线的形状(此时对特征变量进行标准化处理很重要)

显式求解theta--正规方程

  

 梯度下降正规方程
alphay  n
迭代yn
复杂度O(kn^2)O(n^3)
当n很大时较快很慢

  正规方程可能存在不收敛的情况,比如

    a.有冗余特征(特征变量之间线性相关)  b.特征太多

  此时应该删除多余特征

 

 

 

  

 

  

 

转载于:https://www.cnblogs.com/lypniuyou/p/9536637.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值