SPSS聚类分析:K均值聚类分析

本文详细介绍了如何在SPSS中进行K均值聚类分析,包括概念、聚类中心的选择、迭代参数设置、结果保存以及相关统计量的选择。通过聚类分析,可以对数据进行有效分类,实现数据的合理分组。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SPSS聚类分析:K均值聚类分析

一、概念:(分析-分类-K均值聚类)

   1、此过程使用可以处理大量个案的算法,根据选定的特征尝试对相对均一的个案组进行标识。不过,该算法要求您指定聚类的个数。如果知道,您可以指定初始聚类中心。您可以选择对个案分类的两种方法之一,要么迭代地更新聚类中心,要么只进行分类。可以保存聚类成员、距离信息和最终聚类中心。还可以选择指定一个变量,使用该变量的值来标记个案输出。您还可以请求分析方差F统计量。

二、聚类中心(分析-分类-K均值聚类)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值