题目:Given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing only 1’s and return its area.
For example, given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.
解析:用动态规划算法求解,令 len[i][j] 表示以 (i, j) = ‘1’) 为右下角元素的最大正方形边长,则递推公式为 len[i][j] = min(len[i-1][j], len[i][j-1], len[i-1][j-1]) + 1;
代码如下:
// 动态规划算法,时间复杂度 O(n^2),空间复杂度 O(n^2)
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
if (matrix.size() == 0 || matrix[0].size() == 0)
return 0;
const int n = matrix.size(), m = matrix[0].size();
int len[n][m]; // len[i][j] 表示以元素 matrix[i][j] 为右下角的满足题意的最大正方形边长
int max_len = 0; // max_len 为满足题意的整个矩阵中最大正方形的边长
for (int i = 0; i < n; ++i) {
len[i][0] = matrix[i][0] - '0';
if (matrix[i][0] == '1')
max_len = 1;
}
for (int i = 0; i < m; ++i) {
len[0][i] = matrix[0][i] - '0';
if (matrix[0][i] == '1')
max_len = 1;
}
for (int i = 1; i < n; ++i)
for (int j = 1; j < m; ++j) {
if (matrix[i][j] == '0') len[i][j] = 0;
else {
len[i][j] = min(len[i - 1][j], len[i][j -1])
len[i][j] = min(len[i][j], len[i - 1][j - 1]);
++len[i][j];
max_len = max(max_len, len[i][j]);
}
}
return max * max;
}
};