# _*_encoding=utf-8_*_
import os
os.environ['CUDA_DEVICE_ORDER']="PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES']='0'
import torch
from torch.autograd import Variable
from torch import nn
from torch import optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
# 简单的三层网络
class simpleNet(nn.Module):
def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
super(simpleNet, self).__init__()
self.layer1 = nn.Linear(in_dim, n_hidden_1)
self.layer2 = nn.Linear(n_hidden_1, n_hidden_2)
self.layer3 = nn.Linear(n_hidden_2, out_dim)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x
# 添加激活函数
class Activation_Net(nn.Module):
def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
super(Activation_Net,self).__init__()
# 这是为了将网络的层组合在一起,比如这里的nn.Linear() 和 nn.Relu()组合在一起作为self.layer
self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1), nn.ReLU(True))
self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.ReLU(True))
self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, out_dim), nn.ReLU(True))
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x
# 添加批标准化
class Batch_Net(nn.Module):
def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
super(Batch_Net, self).__init__()
self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1), nn.BatchNorm1d(n_hidden_1), nn.ReLU(True))
self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2), nn.ReLU(True))
self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, out_dim))
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x
batch_size = 32
learning_rate = 1e-2
num_epoches = 30
# compose操作是将所有的预处理操作组合到一起
data_ft = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
# load data
train_dataset = datasets.MNIST(root='./data', train=True, transform=data_ft, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=data_ft)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
# Load net and def loss and optimizer
model = net.Batch_Net(28*28, 300, 100, 10)
if torch.cuda.is_available():
model = model.cuda()
else:
model = model
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
all_loss = 0
for each_poch in range(num_epoches):
for data in train_loader:
img, label = data
img = img.view(img.size(0), -1)
if torch.cuda.is_available():
img = Variable(img).cuda()
label = Variable(label).cuda()
else:
img = Variable(img)
label = Variable(label)
target = model(img)
loss = criterion(target, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
all_loss = loss
# print("Loss is {}",format(loss))
each_poch = each_poch +1
print("poch {}".format(each_poch), ", loss is {}".format(all_loss))
model.eval()
eval_loss = 0.0
eval_acc = 0.0
for data in test_loader:
img, label = data
img = img.view(img.size(0), -1)
if torch.cuda.is_available():
img = Variable(img).cuda()
label = Variable(label).cuda()
else:
img = Variable(img)
label = Variable(label)
out = model(img)
loss = criterion(out,label)
eval_loss +=loss.data*label.size(0)
_, pred = torch.max(out, 1)
num_correct = torch.sum((pred==label))
eval_acc += num_correct.data
eval_acc = eval_acc.float()
print('Test Loss:{:.6f}'.format(eval_acc/(len(test_dataset))))
print((len(test_dataset)))
print('Test Loss:{:.6f}'.format(eval_loss/(len(test_dataset))))
实验的结果为:
# _*_ encoding=utf-8 _*_
import torch
from torch import nn
from torch.nn import functional as F
class ResidualBlock(nn.Module):
def __init__(self, in_channel, out_channel, stride=1, short_cut=None):
super(ResidualBlock,self).__init__()
self.left = nn.Sequential(
nn.Conv2d(in_channel, out_channel, 3, stride, 1, bias=False),
nn.BatchNorm2d(out_channel),
# 表示输出直接覆盖到输入中,这样的话就可以节省内存和显存
nn.ReLU(inplace=True),
nn.Conv2d(out_channel, out_channel, 3, stride, 1, bias=False),
nn.BatchNorm2d(out_channel))
self.right = short_cut
def forward(self, input):
out = self.left(input)
residual = input if self.right is None else self.right(input)
out +=residual
return F.relu(out)
class ResNet(nn.Module):
def __init__(self,num_class = 1000):
super(ResNet,self).__init__()
self.pre = nn.Sequential(
nn.Conv2d(3,64,7,2,3,bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(3,2,1)
)
self.layer1 = self._make_layer(64,128,3)
self.layer2 = self._make_layer(128, 256, 4, stride =2)
self.layer3 = self._make_layer(256, 512, 6, stride =2)
self.layer4 = self._make_layer(512, 512, 3, stride=2)
self.fc = nn.Linear(512, num_class)
def _make_layer(self, in_channel, out_channel, block_num, stride=1):
short_cut = nn.Sequential(
nn.Conv2d(in_channel, out_channel, 1, stride, bias=False),
nn.BatchNorm2d(out_channel)
)
layers =[]
layers.append(ResidualBlock(in_channel, out_channel, stride, short_cut))
for i in range(1, block_num):
layers.append(ResidualBlock(out_channel, out_channel))
return nn.Sequential(*layers)
def forward(self, x):
x = self.pre(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = F.avg_pool2d(x, 7)
x = x.view(x.size(0),-1)
return self.fc(x)