遗传算法:原理、应用与挑战
1. 遗传算法基础
遗传算法是一种模拟自然选择和遗传机制的优化算法。其核心思想是通过模拟生物进化过程,不断迭代生成新的解,直到找到最优解或满足特定条件。以下是遗传算法的基本运行函数:
# Run the genetic algorithm for max_generations iterations
# and return the best individual found
def run(self) -> C:
best: C = max(self._population, key=self._fitness_key)
for generation in range(self._max_generations):
# early exit if we beat threshold
if best.fitness() >= self._threshold:
return best
print(f"Generation {generation} Best {best.fitness()} Avg {mean(map(self._fitness_key, self._population))}")
self._reproduce_and_replace()
self._mutate()
highest: C = max(self._population, key=self._fitness_key)
if highest.fitness() >
超级会员免费看
订阅专栏 解锁全文
576

被折叠的 条评论
为什么被折叠?



