43、Polynomials, Finite Fields, and Quadratic Residues: A Comprehensive Guide

Polynomials, Finite Fields, and Quadratic Residues: A Comprehensive Guide

1. Polynomials and Irreducibility

In the realm of polynomial mathematics, irreducibility is a fundamental concept. A polynomial (P \in k[X]), where (P \notin k), is considered irreducible (or prime) if its only divisors are elements (c \in k^ ) and (c \cdot P) with (c \in k^ ). In other words, if (P = F \cdot G) for (F, G \in k[X]), then either (F \in k^ ) or (G \in k^ ). A polynomial that is not irreducible is called reducible or composite.

Just like the ring of integers (Z), the ring of polynomials (k[X]) is factorial. This means that every non - zero polynomial (F \in k[X]) has a unique decomposition into irreducible elements. Specifically, there exist pa

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值