This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.
InputEach sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.
Output
output print L - the length of the greatest common increasing subsequence of both sequences.
Sample Input
1
5
1 4 2 5 -12
4
-12 1 2 4
Sample Output
2
是个模板题,今天同学问我,我表达能力有限,只能在这里写篇博客出来了。
用DP[]数组存储a[]数组和b[]数组各个点之间所组成的公共递增子序列的个数。
eg1(这里数组的下标从1开始):
a[] : 1 4 2 5 -12
b[] : -12 1 2 4
从a[1]开始遍历b[]数组,看在b[]数组中有多少和a[1]相等的数,将dp[]值加1.
eg2:
a[1]:
b[1]=-12 b[2]=1 b[3]=2 b[4]=4
dp[1]=0 dp[2]=1 dp[3]=0 dp[4]=4
a[2]:
dp[1]=0 dp[2]=1 dp[3]=0 dp[4]=2
a[3]:
dp[1]=0 dp[2]=1 dp3]=2 dp[4]=2
a[4]:
dp[1]=0 dp[2]=1 dp[3]=2 dp[4]=2
a[5]:
dp[1]=0 dp[2]=1 dp[3]=3 dp[4]=2
其实就是求在b[]数组中,最大值为a[i]的子序列。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int main()
{
int t,n,m,sum;
int a[5200],b[5200],dp[5200];
scanf("%d",&t);
while(t--)
{
memset(dp,0,sizeof(dp));
scanf("%d",&n);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
scanf("%d",&m);
for(int i=1; i<=m; i++)
scanf("%d",&b[i]);
sum=0;
for(int i=1; i<=n; i++)
{
int k=0;
for(int j=1; j<=m; j++)
{
if(a[i]==b[j] && dp[j]<k+1)
dp[j]=k+1;
else if(a[i]>b[j])
{
if(dp[j]>k)
k=dp[j];
}
sum=max(sum,dp[j]);
}
}
printf("%d\n",sum);
if(t)
printf("\n");
}
return 0;
}