牛客题解 | N皇后问题

testtesttesttest## 题目
题目链接

题目主要信息:
  • 在一个 n ∗ n n*n nn的棋盘上要摆放 n n n个皇后,求摆的方案数,不同位置就是不同方案数
  • 摆放要求:任何两个皇后不同行,不同列也不在同一条斜线上
举一反三:

学习完本题的思路你可以解决如下题目:

BM55. 没有重复项数字的全排列

BM56. 有重复项数字的全排列

BM58. 字符串的排列

方法:递归(推荐使用)

知识点:递归与回溯

递归是一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。因此递归过程,最重要的就是查看能不能讲原本的问题分解为更小的子问题,这是使用递归的关键。

如果是线型递归,子问题直接回到父问题不需要回溯,但是如果是树型递归,父问题有很多分支,我需要从子问题回到父问题,进入另一个子问题。因此回溯是指在递归过程中,从某一分支的子问题回到父问题进入父问题的另一子问题分支,因为有时候进入第一个子问题的时候修改过一些变量,因此回溯的时候会要求改回父问题时的样子才能进入第二子问题分支。

n个皇后,不同行不同列,那么肯定棋盘每行都会有一个皇后,每列都会有一个皇后。如果我们确定了第一个皇后的行号与列号,则相当于接下来在 n − 1 n-1 n1行中查找 n − 1 n-1 n1个皇后,这就是一个子问题,因此使用递归:

  • 终止条件: 当最后一行都被选择了位置,说明n个皇后位置齐了,增加一种方案数返回。
  • 返回值: 每一级要将选中的位置及方案数返回。
  • 本级任务: 每一级其实就是在该行选择一列作为该行皇后的位置,遍历所有的列选择一个符合条件的位置加入数组,然后进入下一级。

具体做法:

  • step 1:对于第一行,皇后可能出现在该行的任意一列,我们用一个数组pos记录皇后出现的位置,下标为行号,元素值为列号。
  • step 2:如果皇后出现在第一列,那么第一行的皇后位置就确定了,接下来递归地在剩余的 n − 1 n-1 n1行中找 n − 1 n-1 n1个皇后的位置。
  • step 3:每个子问题检查是否符合条件,我们可以对比所有已经记录的行,对其记录的列号查看与当前行列号的关系:即是否同行、同列或是同一对角线。

图示:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Java实现代码:

import java.util.*;
public class Solution {
   
   
    private int res;
    //判断皇后是否符合条件
    public</
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值