布隆过滤器(Bloom Filter)

本文探讨了布隆过滤器的基本原理,如何利用多个哈希函数降低空间需求并提高查询速度,同时介绍了其误识别率和不可删除的特性,以及在实际场景中的应用,如缓存系统优化和数据检索效率提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

布隆过滤器(Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的。它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter报告某一元素存在于某集合中,但是实际上该元素并不在集合中)和删除困难,但是没有识别错误的情形(即假反例False negatives,如果某个元素确实没有在该集合中,那么Bloom Filter 是不会报告该元素存在于集合中的,所以不会漏报)。

在日常生活中,包括在设计计算机软件时,我们经常要判断一个元素是否在一个集合中。比如在字处理软件中,需要检查一个英语单词是否拼写正确(也就是要判断 它是否在已知的字典中);在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上;在网络爬虫里,一个网址是否被访问过等等。最直接的方法就是将集合中全部的元素存在计算机中,遇到一个新元素时,将它和集合中的元素直接比较即可。一般来讲,计算机中的集合是用哈希表(hash table)来存储的。它的好处是快速准确,缺点是费存储空间。当集合比较小时,这个问题不显著,但是当集合巨大时,哈希表存储效率低的问题就显现出来了。

如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定。链表,树等等数据结构都是这种思路. 但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢。不过世界上还有一种叫作散列表(又叫哈希表,Hash table)的数据结构。它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit Array)中的一个点。这样一来,我们只要看看这个点是不是 1 就知道可以集合中有没有它了。这就是布隆过滤器的基本思想。

Hash面临的问题就是冲突。假设 Hash 函数是良好的,如果我们的位阵列长度为 m 个点,那么如果我们想将冲突率降低到例如 1%, 这个散列表就只能容纳 m/100 个元素。显然这就不叫空间有效了(Space-efficient)。解决方法也简单,就是使用多个 Hash,如果它们有一个说元素不在集合中,那肯定就不在。如果它们都说在,虽然也有一定可能性它们在说谎,不过直觉上判断这种事情的概率是比较低的。

直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中。
和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一个标志,用来判断key是否在集合中。

算法:

  • 1. 首先需要k个hash函数,每个函数可以把key散列成为1个整数
  • 2. 初始化时,需要一个长度为n比特的数组,每个比特位初始化为0
  • 3. 某个key加入集合时,用k个hash函数计算出k个散列值,并把数组中对应的比特位置为1
  • 4. 判断某个key是否在集合时,用k个hash函数计算出k个散列值,并查询数组中对应的比特位,如果所有的比特位都是1,认为在集合中。

优点:

  • 不需要存储key,节省空间

相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数。另外, Hash 函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。

布隆过滤器可以表示全集,其它任何数据结构都不能;

k 和 m 相同,使用同一组 Hash 函数的两个布隆过滤器的交并差运算可以使用位操作进行。

缺点:

  • 算法判断key在集合中时,有一定的概率key其实不在集合中
  • 无法删除

但是布隆过滤器的缺点和优点一样明显。误算率(False Positive)是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。

另外,一般情况下不能从布隆过滤器中删除元素. 我们很容易想到把位列阵变成整数数组,每插入一个元素相应的计数器加1, 这样删除元素时将计数器减掉就可以了。然而要保证安全的删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面. 这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。

应用场景:

某些存储系统的设计中,会存在空查询缺陷:当查询一个不存在的key时,需要访问慢设备,导致效率低下。

比如一个前端页面的缓存系统,可能这样设计:先查询某个页面在本地是否存在,如果存在就直接返回,如果不存在,就从后端获取。但是当频繁从缓存系统查询一个页面时,缓存系统将会频繁请求后端,把压力导入后端。

这是只要增加一个bloom算法的服务,后端插入一个key时,在这个服务中设置一次
需要查询后端时,先判断key在后端是否存在,这样就能避免后端的压力。

布隆过滤器Bloom Filter)是一种重要的数据结构,它用于快速判断一个元素是否存在于一个集合中。布隆过滤器的核心思想是通过一系列哈希函数来对元素进行多次哈希,然后将得到的哈希值映射到一个位数组中,并将对应的位置设为1。当需要判断一个元素是否存在时,同样对其进行多次哈希,检查对应位数组的值是否都为1,若都为1则可以确定元素可能存在;若存在一个0,则可以确定元素一定不存在。因此,布隆过滤器是一种基于概率的数据结构,可以高效地进行查找。 然而,布隆过滤器也存在一些问题。首先,由于多个不同的元素可能会哈希到相同的位上,因此在查询时可能出现误判,即判断一个元素存在时实际上并不存在。这种误判是由于多个元素共享了某一位的原因导致的。其次,布隆过滤器的特性决定了它无法支持元素的删除操作,因为删除一个元素可能会影响其他元素的判断结果,从而增加误判率。 要注意的是,计数布隆过滤器(Counting Bloom Filter)提供了一种实现删除操作的可能性,但并不能保证在后续查询时该值一定返回不存在。因此,不能说计数布隆过滤器支持删除,而是说计数布隆过滤器提供了实现删除的可能。 [3<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [【海量数据处理】布隆过滤器BloomFilter](https://blog.youkuaiyun.com/qq_43727529/article/details/127180864)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *3* [Java --- redis7之布隆过滤器BloomFilter](https://blog.youkuaiyun.com/qq_46093575/article/details/130613434)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值