STM32学习笔记10——stm32中结构体字节对齐问题

探讨STM32中结构体对齐的重要性及方法,包括使用#pragmapack指令和__attribute__宏来定制对齐方式,避免因默认对齐造成的帧格式错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

stm32做串口或网络传输数据时,经常需要用结构体定义帧格式。如果按照keil默认的对齐方式(4字节对齐),经常会出现结构体中补零的问题,造成帧格式错误。所以,在定义结构体类型时,最好把结构体对齐方式改为1字节对齐,防止出错。理论和方法见下面转载的文章。

转载自:https://www.cnblogs.com/King-Gentleman/p/5297355.html

#pragma pack(4)   //按4字节对齐,但实际上由于结构体中单个成员的最大占用字节数为2字节,因此实际还是按2字节对齐

typedef struct

{

    char buf[3];//buf[1]按1字节对齐,buf[2]按1字节对齐,由于buf[3]的下一成员word a是按两字节对齐,因此buf[3]按1字节对齐后,后面只需补一空字节

    word a;      //#pragma pack(4),取小值为2,按2字节对齐。

}kk;

#pragma pack()    //取消自定义字节对齐方式

对齐的原则是min(sizeof(word ),4)=2,因此是2字节对齐,而不是我们认为的4字节对齐。

这里有三点很重要:
1.每个成员分别按自己的方式对齐,并能最小化长度
2.复杂类型(如结构)的默认对齐方式是它最长的成员的对齐方式,这样在成员是复杂类型时,可以最小化长度
3.对齐后的结构体整体长度必须是成员中最大的对齐参数的整数倍,这样在处理数组时可以保证每一项都边界对齐

补充一下,对于数组,比如:
char a[3];这种,它的对齐方式和分别写3个char是一样的.也就是说它还是按1个字节对齐.
如果写: typedef char Array3[3];
Array3这种类型的对齐方式还是按1个字节对齐,而不是按它的长度.
不论类型是什么,对齐的边界一定是1,2,4,8,16,32,64....中的一个.

 

声明:
整理自网络达人们的帖子,部分参照MSDN。

作用:
指定结构体、联合以及类成员的packing alignment;

语法:
#pragma pack( [show] | [push | pop] [, identifier], n )

说明:
1,pack提供数据声明级别的控制,对定义不起作用;
2,调用pack时不指定参数,n将被设成默认值;
3,一旦改变数据类型的alignment,直接效果就是占用memory的减少,但是performance会下降;

语法具体分析:
1,show:可选参数;显示当前packing aligment的字节数,以warning message的形式被显示;
2,push:可选参数;将当前指定的packing alignment数值进行压栈操作,这里的栈是the internal compiler stack,同时设置当前的packing alignment为n;如果n没有指定,则将当前的packing alignment数值压栈;
3,pop:可选参数;从internal compiler stack中删除最顶端的record;如果没有指定n,则当前栈顶record即为新的packing alignment数值;如果指定了n,则n将成为新的packing aligment数值;如果指定了identifier,则internal compiler stack中的record都将被pop直到identifier被找到,然后pop出identitier,同时设置packing alignment数值为当前栈顶的record;如果指定的identifier并不存在于internal compiler stack,则pop操作被忽略;
4,identifier:可选参数;当同push一起使用时,赋予当前被压入栈中的record一个名称;当同pop一起使用时,从internal compiler stack中pop出所有的record直到identifier被pop出,如果identifier没有被找到,则忽略pop操作;
5,n:可选参数;指定packing的数值,以字节为单位;缺省数值是8,合法的数值分别是1、2、4、8、16。

重要规则:
1,复杂类型中各个成员按照它们被声明的顺序在内存中顺序存储,第一个成员的地址和整个类型的地址相同;
2,每个成员分别对齐,即每个成员按自己的方式对齐,并最小化长度;规则就是每个成员按其类型的对齐参数(通常是这个类型的大小)和指定对齐参数中较小的一个对齐;
3,结构体、联合体或者类的数据成员,第一个放在偏移为0的地方;以后每个数据成员的对齐,按照#pragma pack指定的数值和这个数据成员自身长度两个中比较小的那个进行;也就是说,当#pragma pack指定的值等于或者超过所有数据成员长度的时候,这个指定值的大小将不产生任何效果;

4,复杂类型(如结构体)整体的对齐是按照结构体中长度最大的数据成员和#pragma pack指定值之间较小的那个值进行;这样当数据成员为复杂类型(如结构体)时,可以最小化长度;
5,复杂类型(如结构体)整体长度的计算必须取所用过的所有对齐参数的整数倍,不够补空字节;也就是取所用过的所有对齐参数中最大的那个值的整数倍,因为对齐参数都是2的n次方;这样在处理数组时可以保证每一项都边界对齐;

对齐的算法: 由于各个平台和编译器的不同,现以本人使用的gcc version 3.2.2编译器(32位x86平台)为例子,来讨论编译器对struct数据结构中的各成员如何进行对齐的。

在相同的对齐方式下,结构体内部数据定义的顺序不同,结构体整体占据内存空间也不同,如下:

设结构体如下定义:

struct A {

int a;             //a的自身对齐值为4,偏移地址为0x00~0x03,a的起始地址0x00满足0x00%4=0;

char b;           //b的自身对齐值为1,由于紧跟a之后的地址,即0x04满足0x04%1=0,所以b存放在0x04地址空间

short c;          //c的自身对齐值为2,由于紧跟b之后的地址0x05%2不是0,而0x06%2=0,因此c的存放起始地址为0x06,存放在0x06~0x07空间。

                       在b和c之间的0x05地址 则补空字节。

};

结构体A中包含了4字节长度的int一个,1字节长度的char一个和2字节长度的short型数据一个。所以A用到的空间应该是7字节。但是因为编译器要对数据成员在空间上进行对齐。由于结构体自身对齐值取数据成员中自身对齐值的最大值,即4,并且0x00~0x07的8字节空间满足8%4=0,所以sizeof(strcut A)值为8。

现在把该结构体调整成员变量的顺序。

struct B {

char b;          //b的自身对齐值为1,其起始地址为0x00,由于满足0x00%1=0,所以b存放在0x00地址空间

int a;             //a的自身对齐值为4,由于紧跟b之后的地址0x01%4不是0,而0x04%4=0,因此c的存放起始地址为0x04,存放在0x04~0x07空间。

                       在b和a之间的0x01~0x03地址则补3个空字节。

short c;          //c的自身对齐值为2,由于紧跟a之后的地址0x08%2=0,因此c的存放起始地址为0x08,存放在0x08~0x09空间。

};

这时候同样是总共7个字节的变量,但是由于结构体自身对齐值取数据成员中自身对齐值的最大值,即4,并且0x00~0x09的10字节空间不满足10%4=0,而12%4=0,所以sizeof(struct B)的值却是12,即在紧跟c之后的0x0A~0x0B地址还需补两个空字节,使得整个结构体占用的字节空间为12个字节。

 

下面我们使用预编译指令#pragma pack (value)来告诉编译器,使用我们指定的对齐值来取代缺省的。

#pragma pack (2) /*指定按2字节对齐,等价于#pragma pack(push,2)*/

struct C {

char b;

int a;

short c;

};

#pragma pack () /*取消指定对齐,恢复缺省对齐,等价于#pragma pack(pop)*/

sizeof(struct C)值是8。

修改对齐值为1:

#pragma pack (1) /*指定按1字节对齐*/

struct D {

char b;

int a;

short c;

};

#pragma pack () /*取消指定对齐,恢复缺省对齐*/

sizeof(struct D)值为7。

对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,long类型,其自身对齐值为4,double,long long类型,其自身对齐值为8,单位字节。

这里面有四个概念值:

1.数据类型自身的对齐值:就是上面交代的基本数据类型的自身对齐值。

2.指定对齐值:#pragma pack (value)时的指定对齐值value。

3.结构体或者类的自身对齐值:其数据成员中自身对齐值最大的那个值。

4.数据成员、结构体和类的有效对齐值:自身对齐值和指定对齐值中小的那个值。

有了这些值,我们就可以很方便的来讨论具体数据结构的成员和其自身的对齐方式。

有效对齐值N是最终用来决定数据存放地址方式的值,最重要。有效对齐N,就是表示“对齐在N上”,也就是说该数据的"存放起始地址%N=0".

而数据结构中的数据变量都是按定义的先后顺序来排放的。第一个数据变量的起始地址就是数据结构的起始地址。结构体的成员变量要对齐排放,结构体本身也要根据自身的有效对齐值圆整(就是结构体成员变量占用总长度需要是对结构体有效对齐值的整数倍,结合下面例子理解)。这样就不难理解上面的几个例子的值了。

例子分析: 分析例子B;

struct B {

char b;

int a;

short c;

};

假设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,在笔者环境下,该值默认为4。

第一个成员变量b的自身对齐值是1,比指定或者默认指定对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x0000%1=0.

第二个成员变量a,其自身对齐值为4,所以有效对齐值也为4,所以只能存放在起始地址为0x0004到0x0007这四个连续的字节空间中,符合0x0004%4=0, 且紧靠第一个变量。

第三个变量c,自身对齐值为2,所以有效对齐值也是2,可以存放在0x0008到0x0009这两个字节空间中,符合0x0008%2=0。所以从0x0000到0x0009存放的都是B内容。

再看数据结构B的自身对齐值为其变量中最大对齐值(这里是a)和指定对齐值(这里是4)中较小的那个,所以就是4,所以结构体的有效对齐值也是4。根据结构体圆整的要求,0x0009到0x0000=10字节,(10+2)%4=0。所以0x0000A到0x000B也为结构体B所占用。故B从0x0000到0x000B共有12个字节,sizeof(struct B)=12;

同理,分析上面例子C:

 #pragma pack (2)/*指定按2字节对齐*/

struct C {

char b;

int a;

short c;

};

#pragma pack () /*取消指定对齐,恢复缺省对齐*/

第一个变量b的自身对齐值为1,指定对齐值为2,所以,其有效对齐值为1,假设C从0x0000开始,那么b存放在0x0000,符合0x0000%1=0;

第二个变量,自身对齐值为4,指定对齐值为2,所以有效对齐值为2,所以顺序存放在0x0002、0x0003、0x0004、0x0005四个连续字节中,符合0x0002%2=0。

第三个变量c的自身对齐值为2,所以有效对齐值为2,顺序存放在0x0006、0x0007中,符合0x0006%2=0。

所以从0x0000到0x00007共八字节存放的是C的变量,又C的自身对齐值为4;

所以C的有效对齐值为2。又8%2=0,C只占用0x0000到0x0007的八个字节。所以sizeof(struct C)=8.

 

更改c编译器的缺省字节对齐方式:
在缺省情况下,c编译器为每一个变量或数据单元按其自然对界条件分配空间;一般地可以通过下面的两种方法来改变缺省的对界条件:
方法一:
使用#pragma pack(n),指定c编译器按照n个字节对齐;
使用#pragma pack(),取消自定义字节对齐方式。

方法二:
__attribute(aligned(n)),让所作用的数据成员对齐在n字节的自然边界上;如果结构中有成员的长度大于n,则按照最大成员的长度来对齐;
__attribute((packed)),取消结构在编译过程中的优化对齐,按照实际占用字节数进行对齐。

比如:

typedef struct

{

  ...

}__attribute__((aligned(4))) param_t;

 

综上所述,下面给出例子并详细分析:

例子一:
#pragma pack(4)
class TestB
{
   public:
      int aa;   //第一个成员,放在[0,3]偏移的位置,
  char a;   //第二个成员,自身长为1,#pragma pack(4),取小值,也就是1,所以这个成员按一字节对齐,放在偏移[4]的位置。由于下一成员short b是按2字节对齐,因此char a后面只需补一个空字节
  short b; //第三个成员,自身长2,#pragma pack(4),取小值为2,按2字节对齐,所以放在偏移[6,7]的位置。
  char c;   //第四个,自身长为1,放在[8]的位置。
};
可见,此类实际占用的内存空间是9个字节。(这里有疑问?按我的理解,根据规则5,结构整体的对齐是min( sizeof( int ), pack_value ) = 4,所以sizeof( TestB ) = 12; char a 占用一个字节,后面补3个空字节;short b和char c可以放在同一4字节空间中,后面只需补一个空字节。)


例子二:
#pragma pack(2)
class TestB
{
   public:
      int aa;   //第一个成员,放在[0,3]偏移的位置,
  char a;   //第二个成员,自身长为1,#pragma pack(4),取小值,也就是1,所以这个成员按一字节对齐,放在偏移[4]的位置。由于下一成员short b按2字节对齐,因此char a后面只需补一个空字节
  short b; //第三个成员,自身长2,#pragma pack(4),取2,按2字节对齐,所以放在偏移[6,7]的位置。
  char c;   //第四个,自身长为1,放在[8]的位置。
};
可见结果与例子一相同,各个成员的位置没有改变,(这里有疑问?按我的理解,此时结构整体的对齐是min( sizeof( int ), pack_value ) = 2,所以sizeof( TestB ) = 10;char a后面补一个空字节;char c后面补一个空字节。)


例子三:
#pragma pack(4)
class TestC
{
  public:
     char a;    //第一个成员,放在[0]偏移的位置,由于下一成员short b按2字节对齐,因此char a后面只弱补一个空字节
  short b; //第二个成员,自身长2,#pragma pack(4),取2,按2字节对齐,所以放在偏移[2,3]的位置。
  char c;   //第三个,自身长为1,放在[4]的位置。
};
整个类的实际内存消耗是5个字节,(这里有疑问?按我的理解,整体按照min( sizeof( short ), 4 ) = 2对齐,所以结果是sizeof( TestC ) = 6。)


例子四:
struct Test
{
    char x1;   //第一个成员,放在[0]位置。由于下一成员short x2按2字节对齐,因此char x1后面只需补一个空字节,
    short x2; //第二个成员,自身长度为2,按2字节对齐,所以放在偏移[2,3]的位置,
    float x3;  //第三个成员,自身长度为4,按4字节对齐,所以放在偏移[4,7]的位置,
    char x4;  //第四个成员,自身长度为1,按1字节对齐,所以放在偏移[8]的位置,
};
所以整个结构体的实际内存消耗是9个字节,(这里有疑问?按我的理解,考虑到结构整体的对齐是4个字节,所以整个结构占用的空间是12个字节。char x1和short x2共用一个4字节空间,后面补一个空字节;char x4后面需要补3个空字节。)


例子五:
#pragma pack(8)

struct s1
{
    short a; //第一个,放在[0,1]位置,
    long b;  //第二个,自身长度为4,按min(4, 8) = 4对齐,所以放在[4,7]位置
};
所以结构体的实际内存消耗是8个字节。结构体的对齐是min( sizeof( long ), pack_value ) = 4字节,所以整个结构占用的空间是8个字节。

struct s2
{
char c;          //第一个,放在[0]位置,
s1 d;           //第二个,根据规则四,对齐是min( 4, pack_value ) = 4字节(由于s1占用了8个字节,这里为什么不是8字节??),所以放在[4,11]位置,
long long e; //第三个,自身长度为8字节,所以按8字节对齐,所以放在[16,23]位置,
};
所以实际内存消耗是24字节。整体对齐方式是8字节,所以整个结构占用的空间是24字节。

#pragma pack()

所以:sizeof(s2) = 24, char c后面是空了3个字节接着是s1 d, s1 d后面又补了4个空字节(这里有疑问??按我的理解,char c占一个字节,后面补7个字节;s1 d占8个字节;long long e占8个字节。

 

 

 

<think>我们在处理STM32中的结构体字节对齐问题时,需要注意以下几点:1.结构体成员的对齐:通常编译器会按照成员中最大的基本类型进行对齐(在STM32开发中,默认是4字节对齐)。2.结构体总大小的计算:必须是其最大成员类型的整数倍。3.手动设置对齐:可以使用GCC的__attribute__((aligned(n)))来指定对齐方式,或者使用#pragmapack(n)来改变编译器的默认对齐方式。根据引用[1]和引用[3]的内容,结构体STM32中需要注意字节对齐,否则在访问时可能会发生硬件错误(特别是在强制类型转换时)。下面我们给出一个示例代码,展示如何设置结构体字节对齐。我们将通过三种方式:方式1:使用__attribute__((aligned(4)))设置结构体对齐为4字节。方式2:使用#pragmapack(1)设置1字节对齐,然后恢复默认对齐。方式3:在结构体中添加一个无意义的32位成员,使其自然对齐。另外,根据引用[3],如果要将结构体存储到FLASH中,需要确保结构体的首地址是4字节对齐的,并且结构体内部也要符合对齐要求,否则可以尝试使用缓存数组的方式。示例代码:*///方式1:使用__attribute__((aligned(4)))structMyStruct1{charx1;//1字节shortx2;//2字节,需要对齐到2的倍数地址intx3;//4字节,需要对齐到4的倍数地址charx4;//1字节}__attribute__((aligned(4)));//整个结构体按照4字节对齐//方式2:使用#pragmapack改变对齐#pragmapack(push,1)//保存当前对齐,并设置为1字节对齐structMyStruct2{charx1;shortx2;//由于是1字节对齐,short可以出现在任意地址(但要注意,STM32是ARM架构,要求半字对齐,所以这种方式虽然编译器允许,但运行时可能会导致硬件错误)intx3;charx4;};#pragmapack(pop)//恢复之前的对齐//方式3:在结构体中添加一个无意义的32位成员,确保结构体自然对齐(首地址和大小都满足)structMyStruct3{uint32_tdummy;//作为第一个元素,确保结构体首地址是4字节对齐(如果结构体是定义在堆栈上,由编译器分配,则首地址自动对齐,但这里是为了保证内部成员对齐)charx1;shortx2;intx3;charx4;};/*注意:*方式2中的1字节对齐可能会导致访问成员时出现硬件错误,因为STM32要求半字(16位)访问必须是2字节对齐,字(32位)访问必须是4字节对齐。*因此,在STM32中一般不建议使用1字节对齐,而是使用默认的4字节对齐。另外,引用[3]提到了将结构体保存到FLASH的方法,这里给出一个使用中间数组的示例:1.定义结构体(默认4字节对齐)2.定义一个字节数组,使用__attribute__((aligned(4)))确保字节数组的地址是4字节对齐的。3.使用memcpy将结构体复制到字节数组,然后将字节数组写入FLASH。4.读取时,从FLASH读取到字节数组,再memcpy到结构体。例如:*/#include<string.h>structMyData{intid;floatvalue;charname[20];};//写入FLASH的函数(伪代码)voidWriteToFlash(uint32_taddr,void*data,uint32_tsize){//假设这个函数要求addr是4的倍数,data指向的缓冲区也是4字节对齐的。}//写入结构体的例子voidSaveMyData(uint32_tflash_addr,structMyData*data){//定义一个对齐的缓冲数组staticuint8_tbuffer[sizeof(structMyData)]__attribute__((aligned(4)));memcpy(buffer,data,sizeof(structMyData));WriteToFlash(flash_addr,buffer,sizeof(structMyData));}/*通过上述方法,可以确保写入和读取时地址的对齐。关于结构体大小计算教程:引用[1]中提到:整个结构体的实际内存消耗是9个字节,但结构体总大小为12个字节。我们以MyStruct1为例:MyStruct1:charx1;//1字节,位置0shortx2;//要求2字节对齐,所以不能放在1,而是放在2(因为位置1可能是空出的填充字节),所以位置0:x1,位置1:(填充),位置2-3:x2intx3;//要求4字节对齐,下一个位置是4,所以从位置4开始存放,占4-7charx4;//位置8//然后整个结构体需要对齐到4字节,所以总大小应该是4的倍数,目前是9,所以后面需要填充3个字节(位置9,10,11),总大小为12.可以使用sizeof运算符获取结构体的大小。注意:不同的编译器和编译选项可能导致不同的对齐结果。在STM32开发中,通常使用ARMCC或GCC,并且默认都是4字节对齐。下面我们用一个完整的例子来验证:*/#include<stdio.h>intmain(){//查看MyStruct1的大小printf("SizeofMyStruct1:%d\n",sizeof(structMyStruct1));//预期12//查看每个成员的偏移量structMyStruct1s1;printf("offsetofx1:%d\n",(char*)&s1.x1-(char*)&s1);//0printf("offsetofx2:%d\n",(char*)&s1.x2-(char*)&s1);//应为2printf("offsetofx3:%d\n",(char*)&s1.x3-(char*)&s1);//4printf("offsetofx4:%d\n",(char*)&s1.x4-(char*)&s1);//8return0;}/*注意:这个例子需要在STM32工程中运行,或者在PC上模拟(但结果可能因平台和编译器不同而有差异,在STM32中编译运行才准确)。总结:在STM32开发中,结构体字节对齐是一个重要的问题,特别是当结构体需要直接访问外设寄存器、进行DMA传输或者保存到FLASH时,必须确保结构体的地址和内部成员的对齐。为了避免问题,可以:1.使用默认对齐(4字节),并让编译器自动处理(确保结构体变量定义时地址对齐)。2.如果需要特殊对齐(如网络协议包需要1字节对齐),要格外小心,确保不会发生未对齐的访问(可以通过函数访问来避免直接访问)。3.存储到FLASH时使用缓冲数组,并确保缓冲数组4字节对齐。建议参考教程:1.ARM官方关于数据对齐的文档。2.所使用的编译器(如GCC)关于对齐的说明文档。希望这些示例和解释能帮助你理解STM32中的结构体字节对齐问题。</think> 以下是关于STM32结构体字节对齐的详细说明和示例代码,结合引用内容的关键知识点: ### 一、字节对齐规则说明 1. **对齐原则**:结构体首地址自动4字节对齐(编译器保证)[^2] 2. **成员对齐规则**: - `char`(1B) 可出现在任意地址 - `short`(2B) 地址需是2的倍数 - `int/float`(4B) 地址需是4的倍数 3. **总大小计算**:结构体大小必须是最大成员类型的整数倍(需填充空字节)[^1] ### 二、示例代码(含详细注释) ```c #include <stdint.h> // 默认对齐(4字节对齐) typedef struct { char x1; // 1字节 @偏移0 short x2; // 2字节 @偏移2(中间1字节填充) int x3; // 4字节 @偏移4 char x4; // 1字节 @偏移8 // 末尾填充3字节(使总大小为12) } DefaultAlign; // sizeof = 12 // 1字节紧凑对齐(取消填充) #pragma pack(1) // 设置编译器1字节对齐 typedef struct { char x1; // @偏移0 short x2; // @偏移1(无填充) int x3; // @偏移3 char x4; // @偏移7 } PackedStruct; // sizeof = 8 #pragma pack() // 恢复默认对齐 // 手动添加对齐成员 typedef struct { uint32_t dummy; // 首个元素强制对齐 @偏移0 char x1; // @偏移4 short x2; // @偏移6(需2字节对齐) } ManualAlign; // sizeof = 8 // FLASH存储解决方案 void save_to_flash(void* data, uint32_t size) { uint8_t buffer[100] __attribute__((aligned(4))); // 强制4字节对齐[^3] memcpy(buffer, data, size); // 拷贝到对齐缓冲区 // HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, addr, (uint32_t)buffer); } ``` ### 三、关键问题解决方案 1. **避免FLASH存储错误**: ```c // 错误:直接强制转换非对齐地址 uint32_t* ptr = (uint32_t*)&non_aligned_struct; // 可能导致硬件错误[^3] // 正确:使用对齐缓冲区 uint8_t aligned_buf[sizeof(MyStruct)] __attribute__((aligned(4))); memcpy(aligned_buf, &my_struct, sizeof(MyStruct)); ``` 2. **字节填充可视化**: ``` 默认对齐结构布局: [0]: char x1 [1]: <填充字节> [2-3]: short x2 [4-7]: int x3 [8]: char x4 [9-11]: <填充字节> // 总大小12[^1] ``` ### 四、相关教程资源 1. **[正点原子STM32教程]**:结构体内存对齐章节(免费PDF) 2. **[ST官方AN4449]**:*Structure Packing for Cortex-M Processors*(官网搜索) 3. **[博客园] STM32内存对齐详解**:含DMA传输实例(搜索标题)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值